Description of mechanical properties of carbon nanotubes. Tube wall thickness problem. Size effect. Part 1

R.V. Goldstein, V.A. Gorodtsov, A.V. Chentsov, S.V. Starikov, V.V. Stegailov, G.E. Norman show affiliations and emails
Accepted: 14 February 2012
Citation: R.V. Goldstein, V.A. Gorodtsov, A.V. Chentsov, S.V. Starikov, V.V. Stegailov, G.E. Norman. Description of mechanical properties of carbon nanotubes. Tube wall thickness problem. Size effect. Part 1. Lett. Mater., 2011, 1(4) 185-189


The classical theory of elasticity is used to describe the mechanical properties of nanotubes in many publications. However, necessary for applicability of the theory of elasticity conditions are not fulfilled in the case of single-walled carbon nanotubes (SWCNTs) and tubes with a small number of atomic layers in their walls. Therefore, in the first part of this article, we introduce the method of molecular dynamics and general energy analysis for the description of the generalized Young's modulus (with the dimension of the surface stiffness) and Poisson's ratio characterizing the uniaxial tension of SWCNTs. The strong dependence of the generalized characteristics of the studied nanoscales is their distinctive feature (size effect) as in the contrast to the similar concepts of the elasticity theory.
Here in Part 1 we discussed features of the basic approach and the using of the semi-empirical Tersoff-Brenner-Stewart potential. The main findings will be presented in Part 2.

References (59)

1. S. Iijima. Nature (London) 354, 56 (1991).
2. R. Tenne, L. Margulis, M. Genut, G. Hodcs. Nature (London) 360, 444 (1992).
3. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson. Nature(London) 381, 678 (1996).
4. E.W. Wong, P.E. Sheeehen, C.M. Lieber. Science 277, 1971 (1997).
5. N.G. Chopra, A. Zettl. Solid State Commun. 105, 297(1998).
6. A. Krishnan, E. Dujardin, T.N. Ebbesen, P.N. Yianilos, M.M.J. Treacy. Phys. Rev. B58, 14013 (1998).
7. J. Muster, M. Burghard, S. Roth, C.S. Dusberg, E.Hernandez, A.J. Rubio. Vac. Sci. Technol. 16, 2796 (1998).
8. O. Lourie, H.D. Wagner. J. Mater. Sci. 13, 2418 (1998).
9. J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Baosa, A.J.Kulik, T. Stokli, N.A. Burnham, L. Forri. Phys. Rev. Lett.82, 944 (1999).
10. J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Ferro, W. Benoit, L. Zuppiroli. Appl. Phys. A69, 225(1999).
11. J.P. Salvetat, A.J. Kulik, J.M. Bonard, G.A.D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N.A.Burnham, L. Forro Adv. Mater. 11, 161 (1999).
12. Z.W. Pan, S.S. Xie, L. Lu, B.H. Chang, L.F. Sun, W.Y. Zhou, G. Wang, D.L. Zhang. Appl. Phys. Lett. 74, 3152 (1999).
13. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer. Science.283, 15 (1999).
14. D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T.Colbert, K.A. Smith, R.E. Smalley. Appl. Phys. Lett. 74, 3803 (1999).
15. Z.L. Wang, P. Poncharal, W.A. de Heer. J. Phys. Chem.Solids. 61, 1025 (2000).
16. M.F. Yu, O. Lourie, M.J. Dyer, K. Maloni, T.F. Kelly, R.S.Ruoff. Science. 287, 637 (2000).
17. M.F. Yu, B.S. Files, S. Arepally, R.S. Ruoff. Phys. Rev. Lett.84, 5552 (2000).
18. M.F. Yu, B.I. Yakobson, R.S. Ruoff J. Phys. Chem. B104, 8764 (2000).
19. J.R. Wood, Q. Zhao, M.D. Frogley, E.R. Meurs, A.D. Prins, T. Peijs, D.J. Dunstan, H.D. Wagner. Phys. Rev. B62, 7571(2000).
20. T.W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L.Liu, C.S. Jayanthi, M. Tang, S.Y. Wu. Nature (London).405, 769 (2000).
21. C.A. Cooper, R.J. Young. Proc. SPIE 4098, 172 (2000).
22. S. Xie, W. Li, Z. Pan, B. Chang, L. Sun. J. Phys. Chem.Solids. 61, 1153 (2000).
23. C.A. Cooper, R.J. Young, M. Halsall. Composites A32, 401 (2001).
24. Z.L. Wang, R.P. Gao, P. Poncharal, W.A. de Heer, Z.R.Dai, Z.W. Pan. Mater. Sci. Eng. C16, 3 (2001).
25. Z.L. Wang, R.P. Gao, Z.W. Pan, Z.R. Dai. Adv. Eng. Mater.3, 657 (2001).
26. B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W.Han, A. Zettl, R.O. Ritchie. Mater. Sci. Eng. A334, 173(2002).
27. P.A. Williams, S.J. Papadikis, A.M. Patel, M.R. Falvo, S. Washbum, R. Superfine. Phys. Rev. Lett. 89, 255502(2002).
28. P.A. Williams, S.J. Papadikis, A.M. Patel, M.R. Falvo, S.Washbum, R. Superfine. Appl. Phys. Lett. 82, 805 (2003).
29. S. Cuenot, C. Freitigny, S. Demoustier-Champagne, B.Nysten. J. Appl. Phys. 93, 5650 (2003).
30. H.E. Troiani, M. Viki-Yoshida, G.A. Camacho-Bragado, M.A.L. Marques, A. Rubio, J.A. Ascencio, M. Jose-Yacaman. Nano Letters 3, 751 (2003).
31. P. Jaroenapibal, S.B. Chikkannanavar, D.E. Luzzi, S. Evoy.Appl. Phys. Lett. 85, 4328 (2004).
32. P. Jaroenapibal, D.E. Luzzi, S. Evoy, S. Arepalli. J. Appl.Phys. 98, 044301 (2005).
33. B. Lukic, J.W. Seo, E. Couteau, K. Lee, S. Gradecak, R.Berkecz, K. Htrnandi, S. Depleux, T. Cacciaguerra, F.Beguin, A. Fonseca, J.B. Nagi, G. Csanyi, A. Kis, A.J.Kulik, L. Forro. J. Appl. Phys. A80, 695 (2005).
34. J. Gaillard, M. Skove, A.M. Rao. Appl. Phys. Lett. 86, 233109 (2005).
35. A.R. Hall, L. An, J. Liu, L. Vicci, M.R. Falvo, R. Superfine, S. Washburn. Phys. Rev. Lett. 96, 256102 (2006).
36. M. Nakajiama, M. Arai, T. Fukuda. IEEE Trans. Nanotech.5, 243 (2006).
37. K. Enomoto, S. Kitakata, T. Yasuhara, N. Ohtake, T.Kuzumaki, Y. Mitsuda. Appl. Phys. Lett. 88, 153115(2006).
38. G. Guhados, W. Wan, X. Sun, J.L. Hutter. J. Appl. Phys.101, 033514 (2007).
39. W. Ding, L. Calabri, K.M. Kohlhaas, X. Chen, D.A.Ditkin, R.S. Ruoff. Exper. Mech. 47, 25 (2007).
40. K.T. Kashyap, R.G. Patil. Bull. Mater. Sci. 31, 185 (2008).
41. X.L. Wei, Y. Liu, Q. Chen, M.S. Wang, L.M. Peng. Adv.Funct. Mater. 18, 1555 (2008).
42. B. Bhushan, X. Ling. Phys. Rev. B78, 045429 (2008).
43. A.K. Ojha, A. Materny. J. Raman Spectrosc. (2009).
44. B.I. Yakobson, P. Avouris. Topics Appl. Phys. 80, 287(2001).
45. D. Qian, G.J. Wagner, W.K. Liu, M.F. Yu, R.S. Ruoff. Appl.Mech. Rev. 55, 495 (2002).
46. R.S. Ruoff, D. Qian, W.K. Liu. C. R. Physique 4, 993(2003).
47. D. Srivastava, C. Wei, K. Cho. Appl. Mech. Rev. 56, 215(2003).
48. M.F. Yu. Trans. ASME, J. Eng. Mater. and Techn. 126, 271(2004).
49. J.P. Salvetat, S. Bhattacharyya, R.B. Pipes. Nanosci. J.Nanotechn. 6, 1857 (2006).
50. J.P. Salvetat, G. Desarmot, C. Gautier, P. Poulin. Lect.Notes Phys. 677, 439 Springer. Berlin, Heidelberg (2006).
51. A.V. Eletskii. Phys. Usp. 50, 225 (2007).
52. O.A. Shenderova, V.V. Zhirnov, D.W. Brenner. Crit. Rev.Solid State Mater. Sci. 27, 227 (2002).
53. L.M. Peng, Z.L. Zang, Z.Q. Xue, Q.D. Wu, Z.N. Gu, D.G.Pettifor. Phys. Rev. Lett. 85, 3249 (2000).
54. X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R.O. Jones, Y. Ando.Phys. Rev. Lett. 92, 125502 (2004).
55. E. Hernandez, C. Goze, P. Bernier, A. Rubio. Phys. Rev.Lett. 80, 4502 (1998).
56. Z.T. Tu, Z.C. Ou-Yang. Phys. Rev. 65, 233407 (2002).
57. T. Vodenitcharova, L.C. Zhang. Phys. Rev. B68, 165401(2003).
58. M.S. Dresselhaus, G. Dresselhaus, J.C. Charlier, E.Hernandez. Phil. Trans. R. Soc. Lond. A362, 2065 (2004).
59. Y. Huang, J. Wu, K.C. Hwang. Phys. Rev. B74, 245413(2006).

Cited by (3)

R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko. Phys Mesomech. 19(3), 229 (2016). Crossref
R. Goldstein, V. Gorodtsov, D. Lisovenko, M. Volkov. Smart Mater. Struct. 25(5), 054006 (2016). Crossref
R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko. Phys Mesomech. 18(3), 213 (2015). Crossref

Similar papers