Atomic mechanisms of high-speed migration of symmetric tilt grain boundaries in nanocrystalline Ni

K.P. Zolnikov, D.S. Kryzhevich, A.V. Korchuganov ORCID logo show affiliations and emails
Received 12 February 2019; Accepted 17 March 2019;
Citation: K.P. Zolnikov, D.S. Kryzhevich, A.V. Korchuganov. Atomic mechanisms of high-speed migration of symmetric tilt grain boundaries in nanocrystalline Ni. Lett. Mater., 2019, 9(2) 197-201


There is a sequence of structural transformations of the characteristic structural elements of the GB and the adjacent grain lattice which provide the migration of the GB.Molecular dynamics simulations of structural rearrangements in nanocrystalline Ni with the symmetric tilt grain boundary (GB) ∑5 (310) [001] under shear loading were conducted. It was found that GB can be displaced in the direction perpendicular to the shear loading direction. To activate the displacement, it is necessary to reach the threshold value of the shear stress. The GB displacement is abrupt and is due to a certain sequence of displacements of the atomic planes adjacent to the GB. These planes are successively rebuilt from the structure of one grain to the structure of another grain in the process of GB migration. The velocity of GB migration can reach several hundred meters per second and depends on the rate of shear loading. The use of periodic boundary conditions prevents the rotations of the grains. As the simulated tilt GB is symmetric, both of the crystallite grains will have the same shear moduli in the direction of the applied loading. The shear loading of the crystallite with such a structure does not lead to any volume driving forces. The GB displacement was entirely due to the coupling effect. The shear stress curve as a function of time has a sawtooth shape. The GB experiences displacement upon reaching the maximum value of the applied shear stresses. Despite the high stress values, the GB displacement did not cause the nucleation of the defect structure in the crystallite. The GB migration is accompanied by a change in the volume of atoms involved in structural rearrangements.

References (22)

1. I. Ovid’ko, R. Valiev, Y. Zhu. Prog. Mater Sci. 94, 462 (2018). Crossref
2. E. N. Hahn, M. A. Meyers. Materials Science and Engineering: A. 646, 101 (2015). Crossref
3. Y. Mishin, M. Asta, J. Li. Acta Mater. 58, 1117 (2010). Crossref
4. D. Wolf, V. Yamakov, S. Phillpot, A. Mukherjee, H. Gleiter. Acta Mater. 53, 1 (2005). Crossref
5. M. Dao, L. Lu, R. Asaro, J. D. Hosson, E. Ma. Acta Mater. 55, 4041 (2007). Crossref
6. Y. Shibuta, S. Sakane, E. Miyoshi, S. Okita, T. Takaki, M. Ohno. Nat. Commun. 8, 10 (2017). Crossref
7. L. Zhang, C. Lu, K. Tieu. Comput. Mater. Sci. 118, 180 (2016). Crossref
8. A. Stukowski. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010). Crossref
9. A. Stukowski. Modell. Simul. Mater. Sci. Eng. 20, 045021 (2012). Crossref
10. A. Stukowski, K. Albe. Modell. Simul. Mater. Sci. Eng. 18, 025016 (2010). Crossref
11. L. Zhang, Y. Shibuta, X. Huang, C. Lu, M. Liu. Comput. Mater. Sci. 156, 421 (2019). Crossref
12. V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, H. Gleiter. Nat. Mater. 3, 43 (2003). Crossref
13. J. Yin, Y. Wang, X. Yan, H. Hou, J. T. Wang. Comput. Mater. Sci. 148, 141 (2018). Crossref
14. D. S. Kryzhevich, K. P. Zolnikov, A. V. Korchuganov. Comput. Mater. Sci. 153, 445 (2018). Crossref
15. K. P. Zolnikov, A. V. Korchuganov, D. S. Kryzhevich. Comput. Mater. Sci. 155, 312 (2018). Crossref
16. A. V. Korchuganov, A. N. Tyumentsev, K. P. Zolnikov, I. Y. Litovchenko, D. S. Kryzhevich, E. Gutmanas, S. Li, Z. Wang, S. G. Psakhie. J. Mater. Sci. Technol. 35, 201 (2019). Crossref
17. K. Zolnikov, A. Korchuganov, D. Kryzhevich. Phys. Mesomech. 21, 492 (2018). Crossref
18. S. Plimpton. J. Comput. Phys. 117, 1 (1995). Crossref
19. S. M. Foiles, M. I. Baskes, M. S. Daw. Phys. Rev. B. 33, 7983 (1986). Crossref
20. Y. Mishin, D. Farkas. Philos. Mag. A. 78, 29 (1998). Crossref
21. T. J. Rupert, D. S. Gianola, Y. Gan, K. J. Hemker. Science. 326, 1686 (2009). Crossref
22. S. Psakhie, K. Zolnikov, D. Kryzhevich. Phys. Lett. A. 367, 250 (2007). Crossref

Similar papers


1. the Fundamental Research Program of the State Academies of Sciences for 2013 – 2020 - line of research III.23
2. Russian Science Foundation - project No. 17‑19‑01374