Damping of nanocrystalline materials: a review

R. Muluykov, A. Pshenichnuk, J. Baimova show affiliations and emails
Accepted  01 January 2016
Citation: R. Muluykov, A. Pshenichnuk, J. Baimova. Damping of nanocrystalline materials: a review. Lett. Mater., 2015, 5(4) 485-490
BibTex   https://doi.org/10.22226/2410-3535-2015-4-485-490

Abstract

High defect concentration and non-equilibrium state of nanocrystalline materials can lead to considerable increase of damping capacity, thus the investigation of dumping of the nanocrystalline metals produced by severe plastic deformation is of high importance nowadays. In this review, the latest achievements on the studying of the damping and structure of nanocrystalline materials are discussed for different metals and alloys. The results for amplitude and temperature dependences on internal friction for nanocrystalline metals and alloys prepared by different methods are presented. The results received for amplitude dependence of internal friction are analyzed in the connection with the mechanisms of dissipation of grain and grain boundary dislocations. The comparison of Bordoni, Snoek-Koster and grain boundary peaks, which were found on the temperature dependence of the internal friction is presented for metals in two states: nanocrystalline and coarse grained. After a brief overview of the production of nanocrystaline materials, the focus is set on the damping and structure as well as some mechanical properties of these materials. Both experimental and theoretical investigations of damping capacity in connection with strength properties together with some typical examples are presented. Open issues in the development of nanocrystalline materials with high internal friction are discussed in the conclusion section.

References (45)

1. I.S. Golovin. Key Engineering Materials. 319, 225 (2006).
2. I. G. Ritchie, Z.-L. Pan and F. E. Goodwin, Metall. Trans.A. 22, 617 (1991).
3. D.W. James. Mater. Sci. Eng. 4, 1 (1969).
4. Yu.K. Favstov, Yu.N. Shulga and A.G. Rakhshtadt, Metallic Material Science of High Damping Alloys, p.272, Metallurgia, Moscow (1980) (in Russian).
5. R. R. Mulyukov, N. A. Akhmadeev and R. Z. Valiev, S. B.Mikhailov. Mat. Sci. Eng. A. 171, 143 (1993).
6. R.R. Mulyukov. Nanotechnologies in Russia. 2(7-8), 38(2007).
7. S. Sabbaghianrad, T.G. Langdon. Letters on Materials.5(3), 335 (2015).
8. M. Kawasaki, R.B. Figueiredo, T.G. Langdon. Letters onMaterials. 5(3) 233 (2015).
9. O. S. Sitdikov. Letters on Materials. 5(1), 74 (2015).
10. I.I. Musabirov, I.M. Safarov, R.R. Mulyukov, I.Z. Sharipov, V.V. Koledov. Letters on Materials. 4(4), 265 (2014).
11. T.G. Langdon, Acta Mater. 61, 7035 (2013).
12. W.N. Weins, J.D. Makinson, R.J. De Angelis et al. Nanostr.Mater. 9, 509 (1997).
13. E. Bonetti, L. Pasquini, E. Sampaolesi. Nanostr. Mater.10(3), 437 (1998).
14. B. Cai, Q.P. Kong, P. Cui at al. Scr. Mater. 44(7), 1043(2001).
15. R. Mulyukov, M. Weller, R. Valiev et al. Nanostr. Mater. 6, 577 (1995).
16. E. Bonetti, E.G. Campari, L. Del Bianco et al. Nanostr.Mater. 6, 639 (1995).
17. Y. Watanabe, Y. Suga, H. Sato, H. Tsukamoto, Y. Nishino.Materials Transactions. 54(8), 1288 (2013).
18. J. San Juana, M.L. No. Journal of Alloys and Compounds.355, 65 (2003).
19. Y. Chen, H.C. Jiang, S.W. Liu, L.J. Rong, X.Q. Zhao.Journal of Alloys and Compounds 482, 151 (2009).
20. A. Amini, H. Beladi, N. Hameed, Frank Will. Journal ofAlloys and Compounds 545, 222 (2012).
21. H.R. Salva, L.M. Fabietti, A.A. Ghilarducci, S.E. Urreta.Journal of Alloys and Compounds. 495, 420 (2010).
22. G.E. Mann, T. Sumitomo, C.H. Cáceres, J.R. Griffiths, Mater. Sci. Eng. A 456, 138 (2007).
23. Y. Li, M. Enoki, Mater, Trans. 48, 2343 (2007).
24. Y. Li, M. Enoki, Mater. Trans. 49, 1800 (2008).
25. Y. Li, M. Enoki, J. Mater. Res. 26, 3098 (2011).
26. C.H. Cáceres, T. Sumitomo, M. Veidt, Acta Mater. 51, 6211 (2003).
27. H. Watanabe, Y. Sasakura, N. Ikeo, T. Mukai. Journal ofAlloys and Compounds. 626, 60 (2015).
28. S.H. Chang, S.K. Wu, W.L. Tsai, J.Y. Wang. Journal ofAlloys and Compounds. 487, 142 (2009).
29. V.N. Chuvildeev, T.G. Nieh, M.Yu. Gryaznov, A. N.Sysoev V. I. Kopylov: Scripta Materialia 50, 861 (2004).
30. V.N. Chuvildeev, T.G. Nieh, M.Yu. Gryaznov, V.I. Kopylov, A.N. Sysoev: Journal of Alloys and Compounds 378, 253(2004).
31. Y. Watanabe, H. Sato, Y. Nishino, I.-S. Kim. Mat. Sci. Eng.A. 521-522, 376 (2009).
32. A. Flejszar, A. Mielczarek, G. Vidrich, W. Riehemann.Mat. Sci. Eng. A. 521-522, 299 (2009).
33. A. Amini, H. Beladi, N. Hameed, F. Will. Journal of Alloysand Compounds. 545, 222 (2012).
34. B. Kappesser, U. Stuhr, H. Wipf, J. Weibmuller, C. Klos, H. Gleiter. Journal of Alloys and Compounds. 231, 337(1995).
35. A.I. Ustinov, S.S. Polishchuk, V.S. Skorodzievskii, V.V.Bliznuk. Surface & Coatings Technology. 202, 5812 (2008).
36. R.R. Mulyukov, A.I. Pshenichnyuk. Journal of Alloys andCompounds. 355, 26 (2003).
37. Y. Koizumi, M. Ueyama, N. Tsuji, Y. Minamino , K. Ota:Journal of Alloys and Compounds 355, 47 (2003).
38. J. Wang, Z. Zhang, G. Yang. Key Engineering Materials.319, 109 (2006).
39. F.Tang, H.Tanimoto and S.Okuda. NanoStructuredMaterials. 6, 563 (1995).
40. M. Yadollahpour, S. Ziaei-Rad, F. Karimzadeh.International Journal of Modeling, Simulation, andScientific Computing. 1(3), 421 (2010).
41. R. Mulyukov, S. Mikhailov, R. Zaripova, and D.Salimonenko. Mat. Res. Bull. 31(6), 639 (1996).
42. V.G. Kul’kov. Technical Physics. The Russian Journal ofApplied Physics. 52(3), 333 (2007).
43. R.R. Mulyukov, A.I. Pshenichnyuk. Metal Science andHeat Treatment. 54(5-6), 244 (2012).
44. R.R. Mulyukov. Metal Science and Heat Treatment. 40, 341 (1998).
45. Yu. K. Favstov, Yu. N. Shulga and A. G. Rakhshtadt.Metallic Material Science of High Damping Alloys, M:Metallurgia. 1980. p. 272 (in Russian).

Cited by (3)

1.
O. Poddaeva, A. Fedosova. Energy Reports. 7, 299 (2021). Crossref
2.
N. Yusupova, K. Krylova, R. Mulyukov. Lett. Mater. 11(4), 382 (2021). Crossref
3.
K. Krylova, I. Bitkulov, R. Mulyukov. IOP Conf. Ser.: Mater. Sci. Eng. 1008(1), 012022 (2020). Crossref

Similar papers