The effect of route and post-deformation annealing on the mechanical properties and structure of the Cu-Al composite produced by accumulative HPT

V.N. Danilenko, N.Y. Parkhimovich ORCID logo , L.U. Kiekkuzhina, D.V. Gunderov show affiliations and emails
Received 05 September 2023; Accepted 02 November 2023;
Citation: V.N. Danilenko, N.Y. Parkhimovich, L.U. Kiekkuzhina, D.V. Gunderov. The effect of route and post-deformation annealing on the mechanical properties and structure of the Cu-Al composite produced by accumulative HPT. Lett. Mater., 2023, 13(4s) 444-449
BibTex   https://doi.org/10.22226/2410-3535-2023-4-444-449

Abstract

Microhardness of the Cu-Al-Cu sample after accumulative HPT before and after annealing (left) and schematic representation of the effect of accumulative HPT and further annealing on the sample (right).In the present paper the effect of annealing on the structure and mechanical properties of the Cu-Al composite produced by accumulative high-pressure torsion (ACC HPT) was studied. The sample was produced from a Cu-Al-Cu stack of discs with the following ACC HPT route: 3 cycles by 1 revolution, then fourth cycle was 7 revolutions. Between the cycles, the sample was cut into 4 equal pieces and packed into a single stack. With scanning electron microscopy, it was shown that in the disc shaped sample, a mixed structure composed of Al, Cu, solid solutions and intermetallic phases of the Al-Cu system was formed. Annealing after ACC HPT homogenized the structure of the sample along the radius at the macroscopic scale. Using energy dispersive spectroscopy and X-ray phase analysis, the intermetallic phases and solid solutions were found alongside with Al and Cu. The annealing led to a noticeable growth of fraction of the intermetallic phases and solid solution of Al in Cu. In general, after the annealing the increase in microhardness was observed. However, spread of microhardness values became wider. That was caused by the increase in the fraction of intermetallic phases.

References (24)

1. K. Lu. Science. 328, 319 (2010). Crossref
2. А. P. Zhilyaev, T. G. Langdon. Progr. Mater. Sci. 53, 893 (2008). Crossref
3. V. A. Zhorin, M. R. Kiselev, L. L. Mukhina, T. P. Puryaeva, I. V. Razumovskaya. Chemical physics. 27, 39 (2008). (in Russian) [В.А. Жорин, М.Р. Киселев, Л.Л. Мухина, Т.П. Пуряева, И.В. Разумовская. Химическая физика. 27, 39 (2008).].
4. T. Miyazaki, D. Terada, Y. Miyajima, C. Suryanarayana, R. Murao, Y. Yokoyama, K. Sugiyama. J. Mater Sci. 46, 4296 (2011). Crossref
5. K. Oh-Ishi, K. Edalati, H. S. Kim, K. Hono, Z. Horita. Acta Mater. 61, 3482 (2013). Crossref
6. B. Ahn, A. P. Zhilyaev, H.-J. Lee, M. Kawasaki, T. G. Langdon. Mater. Sci. and Eng. A. 635, 109 (2015). Crossref
7. V. N. Danilenko, S. N. Galishev, R. R. Mulyukov. Perspective Materials. 7, 94 (2009). (in Russian) [В. Н. Даниленко, С. Н. Галышев, Р. Р. Мулюков. Перспективные материалы. 7, 94 (2009).].
8. J.-K. Han, D. K. Han, G. Y. Liang, J.-I. Jang, T. G. Langdon, M. Kawasaki. Adv. Eng. Mater. 20, 1800642 (2018). Crossref
9. M. Kawasaki, J.-K. Han, D.-H. Lee, J.-I. Jang, T. G. Langdon. J. Mater. Res. 33, 2700 (2018). Crossref
10. G. F. Korznikova, K. S. Nazarov, R. K. Khisamov, S. N. Sergeev, R. U. Shayachmetov, G. R. Khalikova, J. A. Baimova, A. M. Glezer, R. R. Mulyukov. Materials Letters. 253, 412 (2019). Crossref
11. J.-K. Han, T. Herndon, J.-I. Jang, T. G. Langdon, M. Kawasaki. Adv. Eng. Mater. 22, 1901289 (2020). Crossref
12. P. Bazarnik, A. Bartkowska, B. Romelczyk-Baishya, B. Adamczyk-Cieslak, J. Dai, Y. Huang, M. Lewandowska, T. G. Langdon. Journal of Alloys and Compounds. 846, 156380 (2020). Crossref
13. G. Korznikova, R. Kabirov, K. Nazarov, R. Khisamov, R. Shayakhmetov, E. Korznikova, G. Khalikova, R. Mulyukov. JOM. 72, 2898 (2020). Crossref
14. R. R. Mulyukov, G. F. Korznikova, K. S. Nazarov, R. Kh. Khisamov, S. N. Sergeev, R. U. Shayachmetov, G. R. Khalikova, E. A. Korznikova. Acta Mech. 232, 1815 (2021). Crossref
15. R. Kh. Khisamov, G. R. Khalikova, A. A. Kistanov, G. F. Korznikova, E. A. Korznikova, K. S. Nazarov, S. N. Sergeev, R. U. Shayakhmetov, R. R. Timiryaev, Yu. M. Yumaguzin, R. R. Mulyukov. Continuum Mech. Thermodyn. 35, 1433 (2023). Crossref
16. V. N. Danilenko, S. N. Sergeev, J. A. Baimova, G. F. Korznikova, K. S. Nazarov, R. K. Khisamov, A. M. Glezer, R. R. Mulyukov. Materials Letters. 236, 51 (2019). Crossref
17. K. Edalati, Z. Horita. Mater. Sci. and Eng. A. 652, 325 (2016). Crossref
18. D. V. Gunderov, A. A. Churakova, V. V. Astanin, R. N. Asfandiyarov, H. Hahn, R. Z. Valiev. Mater. Lett. 261, 127000 (2020). Crossref
19. D. V. Gunderov, R. N. Asfandiyarov, V. V. Astanin, A. V. Sharafutdinov. Metals. 13, 1340 (2023). Crossref
20. V. N. Danilenko, L. U. Kiekkuzhina, N. Y. Parkhimovich, E. D. Khafisova, D. V. Gunderov. Materials Letters. 300, 130240 (2021). Crossref
21. V. N. Danilenko, L. U. Kiekkuzhina, N. Y. Parkhimovich, D. V. Gunderov. Letters on Materials. 12 (4), 276 (2022). Crossref
22. M. Pouryazdan, B. J. P. Kaus, A. Rack, A. Ershov, H. Hahn. Nature Communications. 8, 1 (2017). Crossref
23. R. Kulagin, Y. Beygelzimer, A. Bachmaier, R. Pippan, Y. Estrin. Applied Materials Today. 15, 236 (2019). Crossref
24. G. Huang, W. Hou, J. Li, Y. Shen. Surface & Coatings Technology. 344, 30 (2018). Crossref

Similar papers

Funding

1. Russian Science Foundation - № 22 19 00347
2. Russian Academy of Sciences - № 122011900426 4