Effect of annealing on the structure and phase composition of Cu-Al composite produced by conventional and accumulative HPT

V.N. Danilenko, L.U. Kiekkuzhina, N.Y. Parkhimovich ORCID logo , D.V. Gunderov show affiliations and emails
Received: 06 July 2022; Revised: 30 August 2022; Accepted: 09 September 2022
Citation: V.N. Danilenko, L.U. Kiekkuzhina, N.Y. Parkhimovich, D.V. Gunderov. Effect of annealing on the structure and phase composition of Cu-Al composite produced by conventional and accumulative HPT. Lett. Mater., 2022, 12(4) 276-281
BibTex   https://doi.org/10.22226/2410-3535-2022-4-276-281


XRD patterns from annealed Cu-Al-Cu samples after conventional (left pattern) and accumulative (right pattern) HPT.The paper presents the first results of the investigation of the effect of annealing on the evolution of microstructure and phase composition of a Cu-Al composite obtained by accumulative high pressure torsion (HPT). Cu-Al composites produced under 6 GPa in 10 revolutions at room temperature with conventional and accumulative HPT were annealed at 450°C for 15 min. Electron microscopy and energy dispersive spectrometry analysis showed that annealing enhances the solid-state reaction. In the sample after conventional HPT and post-deformation annealing, grayer contrast layers containing intermetallic compounds were formed at the copper-aluminum interface. The contrast on the microstructure images of the sample after accumulative HPT and post-deformation annealing is more uniform than after conventional HPT and annealing. In the sample, a more intense phase transformation occurred. This led to a noticeable increase in the volume fraction of the intermetallic compounds up to 5 – 6 times. X-ray diffraction analysis indicates that in the annealed sample after accumulative HPT, alongside with initial copper, there is also a solid solution of aluminum in copper, which differs from copper with a crystal lattice parameter. Post-deformation annealing led to the formation of different quantity of intermetallic compounds in the studied samples.

References (28)

1. А. P. Zhilyaev, T. G. Langdon. Progr. Mater. Sci. 53, 893 (2008). Crossref
2. A. P. Zhilyaev, A. I. Pshenichnyuk, F. Z. Utyashev, G. I. Raab. Superplasticity and grain boundaries in ultrafine-grained materials. Woodhead Publishing (2021) 416 p.
3. H. Azzeddine, D. Bradai, T. Baudin, T. G. Langdon. Prog. in Mater. Sci. 125, 100866 (2022). Crossref
4. K. Edalati, Z. Horita. J. Mater. Sci. 45, 4578 (2010). Crossref
5. A. Hohenwarter. Mater. Sci. Eng. A. 626, 80 (2015). Crossref
6. Yu. Ivanisenko, R. Kulagin, V. Fedorov, A. Mazilkin, T. Scherer, B. Baretzky, H. Hahn. Mater. Sci. Eng. A. 664, 247 (2016). Crossref
7. M. Jahedi, M. H. Paydar, Sh. Zheng, I. J. Beyerlein, M. Knezevic. Materials Science & Engineering A. 611, 29 (2014). Crossref
8. D. V. Gunderov, A. A. Churakova, V. V. Astanin, R. N. Asfandiyarov, H. Hahn, R. Z. Valiev. Mater. Lett. 261, 127000 (2020). Crossref
9. D. Gunderov, A. Stotskiy, Y. Lebedev, V. Mukaeva. Metals. 11, 573 (2021). Crossref
10. V. N. Danilenko, L. U. Kiekkuzhina, N. Y. Parkhimovich, E. D. Khafisova, D. V. Gunderov. Materials Letters. 300, 130240 (2021). Crossref
11. V. N. Danilenko, G. F. Korznikova, A. P. Zhilyaev, S. N. Sergeev, G. R. Khalikova, R. K. Khisamov, K. S. Nazarov, L. U. Kiekkuzhina, R. R. Mulyukov. IOP Conf. Ser. Mater. Sci. Eng. 447, 012021 (2018). Crossref
12. J.-K. Han, D. K. Han, G. Y. Liang, J.-I. Jang, T. G. Langdon, M. Kawasaki. Adv. Eng. Mater. 20, 1800642 (2018). Crossref
13. G. F. Korznikova, K. S. Nazarov, R. K. Khisamov, S. N. Sergeev, R. U. Shayachmetov, G. R. Khalikova, J. A. Baimova, A. M. Glezer, R. R. Mulyukov. Materials Letters. 253, 412 (2019). Crossref
14. P. Bazarnik, A. Bartkowska, B. Romelczyk-Baishya, B. Adamczyk-Cieslak, J. Dai, Y. Huang, M. Lewandowska, T. G. Langdon. Journal of Alloys and Compounds. 846, 156380 (2020). Crossref
15. G. Korznikova, R. Kabirov, K. Nazarov, R. Khisamov, R. Shayakhmetov, E. Korznikova, G. Khalikova, R. Mulyukov. JOM. 72, 2898 (2020). Crossref
16. V. N. Danilenko, R. M. Mazitov. Nanotechnology and Science of Nanocrystalline Materials. Collection of seminar topics. Ekaterinburg, Russia (2005) p. 280. (in Russian) [В. Н. Даниленко, Р. М. Мазитов. Нанотехнология и физика функциональных нанокристаллических материалов. Сборник научных трудов. Екатеринбург: УрО РАН (2005), т. 1, с. 280.].
17. V. N. Danilenko, S. N. Sergeev, J. A. Baimova, G. F. Korznikova, K. S. Nazarov, R. K. Khisamov, A. M. Glezer, R. R. Mulyukov. Materials Letters. 236, 51 (2019). Crossref
18. B. Ahn, A. P. Zhilyaev, H.-J. Lee, M. Kawasaki, T. G. Langdon. Mater. Sci. and Eng. A. 635, 109 (2015). Crossref
19. J.-K. Han, H.-J. Lee, M. Kawasaki, T. G. Langdon. Mater. Sci. and Eng. A. 684, 318 (2017). Crossref
20. M. Kawasaki, J.-K. Han, D.-H. Lee, J.-I. Jang, T. G. Langdon. J. Mater. Res. 33, 2700 (2018). Crossref
21. V. N. Danilenko, S. N. Galishev, R. R. Mulyukov. Perspective Materials. 7, 94 (2009). (in Russian) [В. Н. Даниленко, С. Н. Галышев, Р. Р. Мулюков. Перспективные материалы. 7, 94 (2009).].
22. G. Korznikova, E. Korznikova, K. Nazarov, R. Shayakhmetov, R. Khisamov, G. Khalikova, R. Mulyukov. Adv. Eng. Mater. 23, 2000757 (2020). Crossref
23. D. Hernández-Escobar, J. Marcus, J. K. Han, R. R. Unocic, M. Kawasaki, C. J. Boehlert. Mater. Sci. and Eng. A. 771, 138578 (2020). Crossref
24. D. Luo, T. Huminiuc, Y. Huang, T. Polcar, T. G. Langdon. Mater. Sci. and Eng. A. 790, 139693 (2020). Crossref
25. V. Y. Mehr, M. R. Toroghinejad, A. Rezaeian. Materials Science & Engineering A. 601, 40 (2014). Crossref
26. V. N. Danilenko, L. U. Kiekkuzhina, A. S. Selivanov, Yu. V. Logachov, V. V. Atroshenko, R. R. Mulyukov. Letters on Materials. 12 (2), 106 (2022). Crossref
27. K. Oh-Ishi, K. Edalati, H. S. Kim, K. Hono, Z. Horita. Acta Mater. 61, 3482 (2013). Crossref
28. X. J. Liu, I. Ohnuma, R. Kainuma, K. Ishida. J. Alloys Compd. 264, 201 (1998). Crossref

Similar papers


1. Russian Science Foundation - 22-19-00347
2. state assignment of the IMSP RAS - № 122011900426-4