Molecular dynamics study of melting, crystallization and devitrification of nickel nanoparticles

G.M. Poletaev ORCID logo , Y.Y. Gafner, S.L. Gafner show affiliations and emails
Received 17 June 2023; Accepted 03 July 2023;
Citation: G.M. Poletaev, Y.Y. Gafner, S.L. Gafner. Molecular dynamics study of melting, crystallization and devitrification of nickel nanoparticles. Lett. Mater., 2023, 13(4) 298-303


The difference between the mechanisms of crystallization of nanoparticles upon cooling from the melt and upon heating from low temperatures during devitrification is studiedThe processes of melting, crystallization and devitrification of nickel nanoparticles were studied by molecular dynamics. The influence of particle size and the rate of temperature change during heating or cooling were considered. At a cooling rate of 1013 K / s, crystallization did not have time to occur in the model used, but at a rate of 1012 K / s, a nickel particle crystallized with the formation of a nanocrystalline structure. It is shown that the changes in the melting, crystallization, and devitrification temperatures relative to the ones in the bulk material are inversely proportional to the particle diameter (subject to a correction that takes account for the finite width of the surface layer): as the particle size decreases and, accordingly, the free surface fraction increases, the melting temperatures during heating and crystallization temperature during cooling decrease, while the devitrification temperature increases. The main difference between the mechanisms of crystallization upon cooling from the melt and upon devitrification during heating from the glassy state is that, in the first case, stable crystalline nuclei are predominantly formed in the volume of the particle, while upon devitrification (at comparatively lower temperatures), nuclei are formed more often near the surface of the particle.

References (35)

1. Dekker Encyclopedia of Nanoscience and Nanotechnology, third ed. (ed. by J. A. Schwarz, S. E. Lyshevski, C. I. Contescu). Boca Raton, CRC Press (2014) 4200 p.
2. S.-X. Liang, L.-C. Zhang, S. Reichenberger, S. Barcikowski. Phys. Chem. Chem. Phys. 23, 11121 (2021). Crossref
3. J. Sun, S. K. Sinha, A. Khammari, M. Picher, M. Terrones, F. Banhart. Carbon. 161, 495 (2020). Crossref
4. D. S. He, Y. Huang, B. D. Myers, D. Isheim, X. Fan, G.-J. Xia, Y. Deng, L. Xie, S. Han, Y. Qiu, Y.-G. Wang, J. Luan, Z. Jiao, L. Huang, V. P. Dravid, J. He. Nano Research. 15, 5575 (2022). Crossref
5. Y. Qian, A. Silva, E. Yu, C. L. Anderson, Y. Liu, W. Theis, P. Ercius, T. Xu. Nat. Commun. 12, 2767 (2021). Crossref
6. Y. Pei, G. Zhou, N. Luan, B. Zong, M. Qiao, F. Tao. Chem. Soc. Rev. 41, 8140 (2012). Crossref
7. Z. Jia, Q. Wang, L. Sun, Q. Wang, L. C. Zhang, G. Wu, J. H. Luan, Z. B. Jiao, A. Wang, S. X. Liang, M. Gu, J. Lu. Adv. Funct. Mater. 29, 1807857 (2019). Crossref
8. Q. Chen, Z. Yan, L. Guo, H. Zhang, L.-C. Zhang, W. Wang. J. Mol. Liq. 318, 114318 (2020). Crossref
9. B. J. Yang, J. H. Yao, J. Zhang, H. W. Yang, J. Q. Wang, E. Ma. Scr. Mater. 61, 423 (2009). Crossref
10. J. Schroers, W. L. Johnson. Phys. Rev. Lett. 93, 255506 (2004). Crossref
11. P. Wagener, J. Jakobi, C. Rehbock, V. S. K. Chakravadhanula, C. Thede, U. Wiedwald, M. Bartsch, L. Kienleand, S. Barcikowski. Sci. Rep. 6, 23352 (2016). Crossref
12. A. R. Ziefub, S. Reichenberger, C. Rehbock, I. Chakraborty, M. Gharib, W. J. Parak, S. Barcikowski. J. Phys. Chem. C. 122, 22125 (2018). Crossref
13. K. Amikura, T. Kimura, M. Hamada, N. Yokoyama, J. Miyazaki, Y. Yamada. Appl. Surf. Sci. 254, 6976 (2008). Crossref
14. S. Barcikowski, G. Compagnini. Phys. Chem. Chem. Phys. 15, 3022 (2013). Crossref
15. P. Buffat, J.-P. Borel. Phys. Rev. A. 13, 2287 (1976). Crossref
16. G. L. Allen, R. A. Bayles, W. W. Gile, W. A. Jesser. Thin Solid Films. 144, 297 (1986). Crossref
17. Т. Castro, R. Reifenberger, E. Choi, R. P. Andres. Phys. Rev. B. 42, 8548 (1990). Crossref
18. Y. Qi, Т. Cagin, W. L. Johnson, W. A. Goddard III. J. Chem. Phys. 115, 385 (2001). Crossref
19. I. V. Chepkasov, Y. Y. Gafner, M. A. Vysotin, L. V. Redel. Physics of the Solid State. 59, 2076 (2017). Crossref
20. G. M. Poletaev, A. A. Sitnikov, V. I. Yakovlev, V. Y. Filimonov. Journal of Experimental and Theoretical Physics. 134, 183 (2022). Crossref
21. T. D. Nguyen, C. C. Nguyen, V. H. Tran. RSC Advances. 7, 25406 (2017). Crossref
22. A. Wang, H. Yin, M. Ren, H. Lu, J. Xue, T. Jiang. New J. Chem. 34, 708 (2010). Crossref
23. Y. G. Morozov, O. V. Belousova, M. V. Kuznetsov. Inorg. Mater. 47, 36 (2011). Crossref
24. Y. Ruan, C. Wang, J. Jiang. J. Mater. Chem. A. 4, 14509 (2016). Crossref
25. G. P. Purja Pun, Y. Mishin. Philosophical Magazine. 89, 3245 (2009). Crossref
26. E. V. Levchenko, T. Ahmed, A. V. Evteev. Acta Mater. 136, 74 (2017). Crossref
27. G. M. Poletaev. Journal of Experimental and Theoretical Physics. 133, 455 (2021). Crossref
28. C. Chen, F. Zhang, H. Xu, Z. Yang, G. M. Poletaev. Journal of Materials Science. 57, 1833 (2022). Crossref
29. G. M. Poletaev, Yu. V. Bebikhov, A. S. Semenov, A. A. Sitnikov. Journal of Experimental and Theoretical Physics. 136, 477 (2023). Crossref
30. L. Zhong, J. Wang, H. Sheng, Z. Zhang, S. X. Mao. Nature. 512, 177 (2014). Crossref
31. W.-L. Chan, R. S. Averback, D. G. Cahill, Y. Ashkenazy. Phys. Rev. Lett. 102, 095701 (2009). Crossref
32. H. Y. Zhang, F. Liu, Y. Yang, D. Y. Sun. Sci. Rep. 7, 10241 (2017). Crossref
33. G. M. Poletaev, I. V. Zorya. Technical Physics Letters. 46, 575 (2020). Crossref
34. K. S. Kumar, H. Van Swygenhoven, S. Suresh. Acta Mater. 51, 5743 (2003). Crossref
35. M. A. Meyers, A. Mishra, D. J. Benson. Progress in Materials Science. 51, 427 (2006). Crossref

Similar papers


1. Russian Science Foundation - 23-12-20003