Chemically controlled radiation resistance of single-phase fcc Ni-Fe-Cr concentrated solid solutions

A.V. Korchuganov ORCID logo , O.A. Berezikov show affiliations and emails
Received 23 December 2023; Accepted 18 February 2024;
Citation: A.V. Korchuganov, O.A. Berezikov. Chemically controlled radiation resistance of single-phase fcc Ni-Fe-Cr concentrated solid solutions. Lett. Mater., 2024, 14(1) 72-78
BibTex   https://doi.org/10.48612/letters/2024-1-72-78

Abstract

Chemically controlled size distribution of point defect clusters generated by single displacement cascades determines amount and sizes of radiation defects under prolonged irradiation of materialsThe role of chemical composition in governing the radiation resistance mechanisms of fcc Ni-Fe-Cr concentrated solid solutions was studied using molecular dynamics simulation. The structural response of a material to irradiation is greatly influenced by the content of specific chemical elements. The main characteristics of defects formed by single atomic displacements cascades are calculated. The number of survived point defects decreases with a decrease in the Cr fraction and an increase in the Fe fraction in the Ni-Fe-Cr composition. The degree of clustering of interstitial atoms and the maximum size of their clusters decrease with increasing Fe and Cr content. An increase in the Fe fraction enhances the clustering of vacancies and increases the size of their clusters. Features of defect clustering in single cascades determine the evolution of the defect structure during prolonged irradiation (hundreds of cascades), which allows the development of high-level models based on low-level data. By tuning the chemical composition of the material, it is possible to achieve the formation of a certain defect structure with an optimal spatial distribution and number of interstitial dislocation loops and vacancy defects, which will effectively interact with each other, leading to self-healing of radiation damage during prolonged irradiation.

References (22)

1. G. S. Was, D. Petti, S. Ukai, S. Zinkle. J. Nucl. Mater. 527, 151837 (2019).
2. K. Jin, H. Bei. Front. Mater. 5, 26 (2018).
3. Y. Zhang, S. Zhao, W. J. Weber, K. Nordlund, F. Granberg, F. Djurabekova. Curr. Opin. Solid State Mater. Sci. 21, 221 (2017).
4. Z. Cheng, J. Sun, X. Gao, Y. Wang, J. Cui, T. Wang, H. Chang. J. Alloys Compd. 930, 166768 (2023).
5. K. Nordlund, S. J. Zinkle, A. E. Sand, F. Granberg, R. S. Averback, R. E. Stoller, T. Suzudo, L. Malerba, F. Banhart, W. J. Weber, F. Willaime, S. L. Dudarev, D. Simeone. J. Nucl. Mater. 512, 450 (2018).
6. K. P. Zolnikov, A. V. Korchuganov, D. S. Kryzhevich, V. M. Chernov, S. G. Psakhie. Phys. Mesomech. 22, 355 (2019).
7. M.-R. He, S. Wang, K. Jin, H. Bei, K. Yasuda, S. Matsumura, K. Higashida, I. M. Robertson. Scr. Mater. 166, 96 (2019).
8. C. Parkin, M. Moorehead, M. Elbakhshwan, J. Hu, W. Y. Chen, M. Li, L. He, K. Sridharan, A. Couet. Acta Mater. 198, 85 (2020).
9. C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, S. Shi, M.-R. He, I. M. Robertson, W. J. Weber, L. Wang. Nat. Commun. 7, 13564 (2016).
10. S. Zhao, Y. Osetsky, Y. Zhang. Acta Mater. 128, 391 (2017).
11. C. Shan, L. Lang, T. Yang, Y. Lin, F. Gao, H. Deng, W. Hu. Comput. Mater. Sci. 177, 109555 (2020).
12. C. Lu, K. Jin, L. K. Béland, F. Zhang, T. Yang, L. Qiao, Y. Zhang, H. Bei, H. M. Christen, R. E. Stoller, L. Wang. Sci. Rep. 6, 19994 (2016).
13. S. Shi, H. Bei, I. M. Robertson. Mater. Sci. Eng. A. 700, 617 (2017).
14. D. Utt, S. Lee, Y. Xing, H. Jeong, A. Stukowski, S. H. Oh, G. Dehm, K. Albe. Nat. Commun. 13, 4777 (2022).
15. S. Plimpton. J. Comput. Phys. 117, 1 (1995).
16. L. K. Béland, A. Tamm, S. Mu, G. D. Samolyuk, Y. N. Osetsky, A. Aabloo, M. Klintenberg, A. Caro, R. E. Stoller. Comput. Phys. Commun. 219, 11 (2017).
17. Interatomic Potentials Repository. Available online: https://www.ctcms.nist.gov/potentials/entry/2017--Beland-L-K-Tamm-A-Mu-S-et-al--Fe-Ni-Cr/2017--Beland-L-K--Fe-Ni-Cr--LAMMPS--ipr1.html (accessed on 1 Feb. 2024).
18. A. Stukowski, V. V. Bulatov, A. Arsenlis. Model. Simul. Mater. Sci. Eng. 20, 085007 (2012).
19. A. Stukowski. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).
20. K. Jin, W. Guo, C. Lu, M. W. Ullah, Y. Zhang, W. J. Weber, L. Wang, J. D. Poplawsky, H. Bei. Acta Mater. 121, 365 (2016).
21. A. F. Calder, D. J. Bacon, A. V. Barashev, Yu. N. Osetsky. Philos. Mag. 90, 863 (2009).
22. S. Zhao, Y. Osetsky, G. M. Stocks, Y. Zhang. npj Comput. Mater. 5, 13 (2019).

Similar papers

Funding