Molecular dynamics study of the stability of aluminium coatings on iron

A.Y. Galashev, O.R. Rakhmanova, V.A. Kovrov, Y.P. Zaikov show affiliations and emails
Received 01 October 2019; Accepted 08 October 2019;
Citation: A.Y. Galashev, O.R. Rakhmanova, V.A. Kovrov, Y.P. Zaikov. Molecular dynamics study of the stability of aluminium coatings on iron. Lett. Mater., 2019, 9(4) 436-441


Thin aluminum film on the iron substrate at temperatures of 300 K and 1173 K.Among the available protection systems for steel, the use of coatings is the most popular and economical method. One can protect the steel electrode from aggressive media with an aluminum coating. A thin Al film on an Fe substrate has been studied by the molecular dynamics method at a heating temperature from 300 K to 1500 K. A significant horizontal displacement of individual Al atoms on the edges of the film is observed during the simulation. The film begins to “spread” slightly near the edges. This “spreading” creates the conditions for the beginning of diffusion of iron atoms into aluminum. Some Al atoms were found to penetrate the Fe matrix at a temperature of 873 K. The total energy curve of the system shows both the melting transition in aluminum and phase transition from the body-centered cubic lattice to the face-centered cubic one at 1173 K. The binding energy for the Al atom in the lattice of the Fe crystal is smaller than that for Fe atoms. The calculated diffusion coefficients for Al and Fe have a significantly slower growth with a temperature in the range of 673 K ≤ T ≤ 1500 K. To describe the diffusion in a crystal using the molecular dynamics model, a temperature-dependent correction to the activation energy is calculated. The temperature dependence of the diffusion coefficient of aluminum atoms in an iron crystal can be represented as an Arrhenius expression with a temperature-dependent energy barrier for diffusion.

References (25)

1. G. Diamantogiannis, Ch. Alk. Apostolopoulos, P. G. Nikolakopoulos. J. Mater. Civ. Eng. 27, 1094 (2015). Crossref
2. A. E. Galashev, O. R. Rakhmanova, O. A. Novruzova. High Temp. 49, 528 (2011). Crossref
3. N. Jakse, A. Pasture. Scientific Reports. 3, 3135 (2013). Crossref
4. G. Kasperovich, A. Meyer, L. Ratke. Int. Found. Res. 62, 8 (2010).
5. A. Inoue. Acta Mater. 48, 279 (2000). Crossref
6. A. L. Beltukov, S. G. Menshikova, V. I. Ladyanov. High Temp. 53, 491 (2015). Crossref
7. J. N. Kim, C. S. Lee, Y. S. Jin. Met. & Mater. Intern. 24, 1090 (2018). DOI: Crossref
8. S. Joung, W. Nam. Met. & Mater. Intern. 25, 34 (2019). DOI: Crossref
9. N. S. Stoloff, C. T. Liu, S. C. Deevi. Intermetallics. 8, 1313 (2000). Crossref
10. G. M. Hood. Phil. Mag. 21, 305 (1970). Crossref
11. V. Jindal, V. C. Srivastava, A. Das, R. N. Ghosh. Mater. Lett. 60, 1758 (2006). Crossref
12. B. Gao, S. Nalano, K. Kakimoto. Cryst. Growth Des. 12, 522 (2011). Crossref
13. A. May, L. Taleb, M. A. Belouchrani. 13th Intern. Conf. on Fracture. Beijing, China (2013) p. 1.
14. A. E. Galashev. Tech. Phys. 59, 467 (2014). Crossref
15. R. Komanduri, N. Chandrasekaran, L. M. Raff. Int. J. Mech. Sci. 43, 2237 (2001). Crossref
16. M. W. Finnis, J. E. Sinclair. Phil. Mag. A. 50, 45 (1984). Crossref
17. A. E. Galashev, L. A. Elshina. R. V. Muradymov. Rus. J. Phys. Chem. A. 90, 2444 (2016). Crossref
18. V. V. Alekseenko. Phys. Solid State. 50, 1848 (2008). Crossref
19. I. I. Novoselov, A. Yu. Kuksin, A. V. Yanilkin. Phys. Solid State. 56, 1025 (2014). Crossref
20. T. T. Lau, C. J. Först, X. Lin, J. D. Gale, S. Yip, K. J. van Vliet. Phys. Rev. Lett. 98, 2155011 (2007). Crossref
21. A. Ishii, S. Ogata, H. Kimizuka. Phys. Rev. B. 85, 0643031 (2012). Crossref
22. S. J. Plimpton. Comp. Phys. 117, 1 (1995). Crossref
23. Yu. P. Zaikov, V. A. Kovrov, I. V. Brodova, Yu. N. Shtefanyuk, V. K. Pingin, D. I. Vinogradov. Adv. Mater. Res. 1088, 250 (2015). Crossref
24. F. Kargl, H. Weis, T. Unruh, A. Meyer. J. Phys.: Conference Series. 340, 012077 (2012). DOI: Crossref
25. B. Zhang. AIP Advances. 4, 017128 (2014). Crossref

Similar papers