Effect of external pressure on the hydrogen storage capacity of a graphene flake: molecular dynamics

N.G. Apkadirova ORCID logo , K.A. Krylova, J.A. Baimova show affiliations and emails
Received 15 August 2022; Accepted 06 November 2022;
Citation: N.G. Apkadirova, K.A. Krylova, J.A. Baimova. Effect of external pressure on the hydrogen storage capacity of a graphene flake: molecular dynamics. Lett. Mater., 2022, 12(4s) 445-450
BibTex   https://doi.org/10.22226/2410-3535-2022-4-445-450

Abstract

Gravimetric density as the function of exposure time at two temperatures and pressure. The inset shows the initial structure of a crumpled graphene flake (gray atoms) in a hydrogen atmosphere (blue atoms).The hydrogenation process of a crumpled graphene flake under the temperature and pressure is calculated by molecular dynamics. A graphene flake is placed in a hydrogen atmosphere containing both atomic and molecular hydrogen and exposed at finite temperature and pressure in an isothermal-isobaric (NPT) ensemble. Results show that the best gravimetric density is achieved at 77 K and external pressure of 140 atm. However, the increase in the gravimetric density at 77 K is due to the physical adsorption of hydrogen molecules, i.e., van der Waals forces are formed between the carbon surface and H2 molecules. At room temperature, the number of H atoms that formed a covalent bond with the edge C atoms increases during exposure at this temperature. The molecular dynamics simulation demonstrates that different types of hydrogen adsorption by a graphene flake predominate at two temperatures: at 77 K, physical adsorption plays the main role, and at 300 K, chemical adsorption. And the combination of high external pressure and low temperature makes it possible to achieve high values of a hydrogen sorption.

References (41)

1. V. V. Lesyukova, E. P. Korsak. Innovative technologies: theory, tools, practice. 1, 184 (2019). (in Russian) [В. В. Лесюкова, Е. П. Корсак. Инновационные технологии: теория, инструменты, практика. 1, 184 (2019).].
2. V. N. Fateev, O. K. Alekseeva, S. V. Korobtsev, E. A. Seregina, T. V. Fateeva, A. S. Grigoriev, A. Sh. Aliyev. Chemical problems. 4 (16), 453 (2018). (in Russian) [В. Н. Фатеев, О. К. Алексеева, С. В. Коробцев, Е. А. Серегина, Т. В. Фатеева, А. С. Григорьев, А. Ш. Алиев. Химические проблемы. 4 (16), (453) 2018.]. Crossref
3. V. V. Tiunov, P. V. Lykasov. Innovative technologies: theory, tools, practice. 1, 231 (2019). (in Russian) [В. В. Тиунов, П. В. Лыкасов. Инновационные технологии: теория, инструменты, практика. 1, 231 (2019).].
4. V. M. Azhazha, M. A. Tikhonovsky, A. G. Shepelev, Yu. P. Kurilo, T. A. Ponomarenko, D. V. Vinogradov. Voprosy atomnoy nauki i tekhniki. 1 (15), 145 (2006). (in Russian) [В. М. Ажажа, М. А. Тихоновский, А. Г. Шепелев, Ю. П. Курило, Т. А. Пономаренко, Д. В. Виноградов. Вопросы атомной науки и техники. 1 (15), 145 (2006).].
5. H. G. Schimmel, G. Nijkamp, G. J. Kearley, A. Rivera, K. P. de Jong, F. M. Mulder. Materials Science and Engineering. 6 (108), 124 (2004). Crossref
6. N. T. Stetson. Hydrogen Storage Program Area. [Presentation] U. S. Department of Energy. June 8 - 12, 2015. Available from: https://www.hydrogen.energy.gov/pdfs/review15/st000_stetson_2015_o.pdf [Accessed 13th December 2021].
7. B. P. Tarasov. Second International Symposium “Safety and Economy of Hydrogen Transport” (IFSSEHT-2003). (2003) p. 34. Crossref
8. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth. Nature. 446 (7131), 60 (2007). Crossref
9. T. Tallinen, J. A. Åström, J. Timonen. Nature Materials. 8 (1), 25 (2008). Crossref
10. K. Matan, R. B. Williams, T. A. Witten, S. R. Nagel, R. Sidney. Physical Review Letters. 88 (7), 076101 (2002). Crossref
11. M. Ritschel, M. Uhlemann, O. Gutfleisch, A. Leonhardt, A. Graff, Ch. Täschner, J. Fink. Applied Physics Letters. 80 (16), 2985 (2002). Crossref
12. A. Ghosh, K. S. Subrahmanyam, K. S. Krishna, S. Datta, A. Govindaraj, S. K. Pati, C. N. R. Rao. The Journal of Physical Chemistry C. 40 (112), 15704 (2008). Crossref
13. K. A. Krylova, J. A. Baimova, I. P. Lobzenko, A. I. Rudskoy. Physica B: Condensed Matter. 583, 412020 (2020). Crossref
14. K. A. Krylova, J. A. Baimova, R. R. Mulyukov. Lett. Mater. 9 (1), 81 (2019). Crossref
15. Q. X. Pei, Z. D. Sha, Y. W. Zhang. Carbon. 49 (14), 494752 (2011). httpsdoi.org/. Crossref
16. P. O. Krasnov, G. S. Shkaberina, A. A. Kuzubov, E. A. Kovaleva. Applied Surface Science. 416 (15), 766 (2017). Crossref
17. M. M. Maslov, K. S. Grishakov, M. A. Gimaldinova, K. P. Katin. Fullerenes, Nanotubes and Carbon Nanostructures. 28 (2), 97 (2019). Crossref
18. N. Novikov, M. Maslov, K. Katin, V. Prudkovskiy. Lett. Mater. 7 (4), 433 (2017). Crossref
19. J. C. Sun, Z. C. Bai, Z. L. Huang, Z. P. Zhang. Lett. Mater. 10 (2), 200 (2020). Crossref
20. V. V. Mavrinskii, E. A. Belenkov. Lett. Mater. 8 (2), 169 (2018). (in Russian) [В.В. Мавринский, Е.А. Беленков. Письма о материалах. 8 (2), 169 (2018).]. Crossref
21. H. Jiang, X.-L. Cheng, H. Zhang, Y.-J. Tang, C.-X. Zhao. Computational and Theoretical Chemistry. 1068 (15), 97 (2015). Crossref
22. N. G. Apkadirova, K. K. Krylova. IOP Conf. Series: Materials Science and Engineering. 1008, 012051 (2020). Crossref
23. M. Garg, S. Ghosh, V. Padmanabhan. Lett. Mater. 11 (3), 321 (2021). Crossref
24. S. Ghosh, V. Padmanabhan. Diamond and Related Materials. 59, 47 (2015). Crossref
25. S. Ghosh, V. Padmanabhan. International Journal of Hydrogen Energy. 42 (38), 24237 (2017). Crossref
26. P. Molaghan, M. Jahanshahi, M. Ghorbanzadeh Ahangari. Physica B: Condensed Matter. 619 (15), 413175 (2021). Crossref
27. Y. Ferro, F. Marinelli, A. Allouche, J. Chem. Phys. 116 (18), 8124 (2002). Crossref
28. X. Sha, B. Jackson, D. Lemoine, B. Lepetit. J. Chem. Phys. 122 (1), 014709 (2005). Crossref
29. X. Sha, B. Jackson. Surf. Sci. 496 (3), 318 (2002). Crossref
30. V. Tozzini, V. Pellegrini. J. Phys. Chem. 115 (51), 25523 (2011). Crossref
31. I. P. Lobzenko, J. A. Baimova, K. A. Krylova. Chemical Physics. 530 (1), 110608 (2020). Crossref
32. N. G. Apkadirova, K. K. Krylova, R. R. Mulyukov. Materials Physics and Mechanics. 47 (6), 817 (2021). Crossref
33. D. W. Boukhvalov, M. I. Katsnelson, A. I. Lichtenstein. Physical Review B. 77 (3), 035427 (2008). Crossref
34. H. G. Schimmel, G. J. Kearle, M. G. Nijkamp, C. T. Visser, K. P. de Jong, F. M. Mulder. Chemistry - A European Journal. 9 (19), 4764 (2003). Crossref
35. S. J. Stuart, A. B. Tutein, J. A. Harrison. J. Chem. Phys. 112, 6472 (2000). Crossref
36. J. A. Baimova, L. K. Rysaeva, B. Liu, S. V. Dmitriev, K. Zhou. Physica Status Solidi (B). 252 (7), 1502 (2015). Crossref
37. J. A. Baimova, R. T. Murzaev, S. V. Dmitriev. Physics of the Solid State. 56, 2010 (2014). Crossref
38. S. V. Dmitriev. Lett. Mater. 6 (1), 86 (2016). Crossref
39. K. A. Krylova, L. R. Safina, R. T. Murzaev, J. A. Baimova, R. R. Mulyukov. Materials. 14 (11), 3087 (2021). Crossref
40. J. A. Baimova, B. Liu, S. V. Dmitriev, K. Zhou. Journal of Physics D: Applied Physics. 48 (9), 095302 (2015). Crossref
41. S. A. Beznosyuk, O. A. Maslova, L. V. Fomina, M. S. Zhukovsky. Superlattices and Microstructures. 46 (1- 2), 384 (2009). Crossref

Similar papers

Funding

1. State Assignment of IMSP RAS for Young scientist’s laboratory -
2. Grant of the Russian Science Foundation - 20-72-10112