Effect of interatomic potentials on mass transfer by supersonic 2‑crowdions

E.A. Korznikova, I.R. Sunagatova, A.M. Bayazitov, A.S. Semenov, S.V. Dmitirev show affiliations and emails
Received 26 May 2019; Accepted 25 June 2019;
Citation: E.A. Korznikova, I.R. Sunagatova, A.M. Bayazitov, A.S. Semenov, S.V. Dmitirev. Effect of interatomic potentials on mass transfer by supersonic 2‑crowdions. Lett. Mater., 2019, 9(4) 386-390
BibTex   https://doi.org/10.22226/2410-3535-2019-4-386-390

Abstract

Dynamics of N-crowdions is analysed by the molecular dynamics method in order to find the parameters of the interatomic potential that control the crowdion's path length.An interstitial atom placed into a close-packed atomic row is called crowdion. Crowdions are very efficient in mass transfer in the crystal lattice since they are highly mobile, soliton-like objects. It has been demonstrated recently that single interstitial atom can move along a close-packed atomic row with a supersonic speed in two different modes, either as a classical 1‑crowdion or as a 2‑crowdion. The difference is that in the latter case two atoms move with a high speed at the same time, while in the former case only one atom has high speed. It has been shown that the 2‑crowdion requires lesser energy to initiate mass transfer and it travels longer distance if it has same energy with the 1‑crowdion. It is important to compare the efficiency of mass transfer by 2‑crowdions in different materials. Materials have different properties because the interatomic interactions between various atoms are different. In the present study we demonstrate that the most important characteristic of the interatomic potentials, that has effect on the crowdion path length, is the energy of the interatomic bond at the distance between two atoms equal to a half of the equilibrium interatomic distance. This conclusion is justified by the condition of self-focusing propagation of supersonic crowdions, that is the collision velocity of the atoms should not exceed the value when they approach each other closer than half interatomic distance. As an example, mass transfer by 1- and 2‑crowdions is considered in two-dimensional triangular lattice with Morse and Born-Mayer potentials.

References (57)

1. V. L. Indenbom, V. M. Chernov. Phys. Status Solidi (a). 14, 347 (1972). Crossref
2. V. V. Pokropivny, V. V. Skorokhod, A. V. Pokropivny. Model. Simul. Mater. Sc. 5, 579 (1997). Crossref
3. V. D. Natsik, S. N. Smirnov. Low Temp. Phys. 42, 207 (2016). Crossref
4. M. Kiritani. J. Nucl. Mater. 276, 41 (2000). Crossref
5. I. Salehinia, D. F. Bahr. Scripta Mater. 66, 339 (2012). Crossref
6. V. G. Kononenko, V. V. Bogdanov, A. N. Turenko, M. A. Volosyuk, A. V. Volosyuk. Probl. At. Sci. Tech. 104, 15 (2016).
7. A. Korbel, W. Bochniak. Int. J. Mech. Sci. 128, 269 (2017). Crossref
8. H. Mehrer. Diffusion in Solids. Springer-Verlag, Berlin (2007) 651 p. Crossref
9. A. E. Sand, S. L. Dudarev, K. Nordlund. Europhys. Lett. 103, 46003 (2013). Crossref
10. X. Yi, M. L. Jenkins, K. Hattar, P. D. Edmondson, S. G. Roberts. Acta Mater. 92, 163 (2015). Crossref
11. Z. Zhang, K. Yabuuchi, A. Kimura, J. Nucl. Mater. 480, 207 (2016). Crossref
12. T. Koyanagi, N. A. P. K. Kumar, T. Hwang, L. M. Garrison, X. Hu, L. L. Snead, Y. Katoh. J. Nucl. Mater. 490, 66 (2017). Crossref
13. A. Xu, D. E. J. Armstrong, C. Beck, M. P. Moody, G. D. W. Smith, P. A. J. Bagot, S. G. Roberts. Acta Mater. 124, 71 (2017). Crossref
14. E. Korznikova, E. Schafler, G. Steiner, M. J. Zehetbauer. TMS Annual Meeting 2006. San Antonio, Texas (2006) p. 97.
15. B. Liu, L. Bai, E. A. Korznikova, S. V. Dmitriev, A. W.-K. Law, K. Zhou. J. Phys. Chem. C. 121, 13876 (2017). Crossref
16. D. A. Terentyev, T. P. C. Klaver, P. Olsson, M.-C. Marinica, F. Willaime, C. Domain, L. Malerba. Phys. Rev. Lett. 100, 145503 (2008). Crossref
17. H. R. Paneth. Phys. Rev. 80, 708 (1950). Crossref
18. P. M. Derlet, D. Nguyen-Manh, S. L. Dudarev. Phys. Rev. B. 76, 054107 (2007). Crossref
19. A. M. Kosevich, A. S. Kovalev. Solid State Commun. 12, 763 (1973). Crossref
20. A. S. Davydov, A. V. Zolotariuk. Phys. Scripta. 30, 426 (1984). Crossref
21. J. F. R. Archilla, Y. A. Kosevich, N. Jimenez, V. J. Sanchez-Morcillo, L. M. Garcia-Raffi. Phys. Rev. E. 91, 022912 (2015). Crossref
22. Yu. A. Kosevich, R. Khomeriki, S. Ruffo. Europhys. Lett. 66, 21 (2004). Crossref
23. Y. N. Osetsky, D. J. Bacon, A. Serra. Phil. Mag. Lett. 79, 273 (1999). Crossref
24. S. Han, L. A. Zepeda-Ruiz, G. J. Ackland, R. Car, D. J. Srolovitz. Phys. Rev. B. 66, 220101 (2002). Crossref
25. H. Abe, N. Sekimura, Y. Yang. J. Nucl. Mater. 323, 220 (2003). Crossref
26. S. L. Dudarev. Philos. Mag. 83, 3577 (2003). Crossref
27. Y. N. Osetsky, D. J. Bacon, A. Serra, B. N. Singh, S. I. Golubov. Philos. Mag. 83, 61 (2003). Crossref
28. D. A. Terentyev, L. Malerba, M. Hou. Phys. Rev. B. 75, 104108 (2007). Crossref
29. W. H. Zhou, C. G. Zhang, Y. G. Li, Z. Zeng. Scientific Reports. 4, 5096 (2014). Crossref
30. W. H. Zhou, C. G. Zhang, Y. G. Li, Z. Zeng. J. Nucl. Mater. 453, 202 (2014). Crossref
31. J. F. R. Archilla, S. M. M. Coelho, F. D. Auret, V. I. Dubinko, V. Hizhnyakov. Physica D. 297, 56 (2015). Crossref
32. F. M. Russell. Nature (London). 217, 51 (1967). Crossref
33. F. M. Russell. Phys. Lett. A. 130, 489 (1988). Crossref
34. F. Russell. Nucl. Tracks. Rad. Meas. 15, 41 (1988). Crossref
35. D. Schlößer, K. Kroneberger, M. Schosnig, F. M. Russell, K. O. Groeneveld. Radiat. Meas. 23, 209 (1994). Crossref
36. F. M. Russell, J. C. Eilbeck. Europhys. Lett. 78, 10004 (2007). Crossref
37. J. Bajars, J. C. Eilbeck, B. Leimkuhler. Physica D. 301-302, 8 (2015). Crossref
38. J. Bajars, J. C. Eilbeck, B. Leimkuhler. Springer Series Mate. 221, 35 (2015). Crossref
39. J. L. Marin, F. M. Russell, J. C. Eilbeck. Phys. Lett. A. 281, 21 (2001). Crossref
40. S. V. Dmitriev, E. A. Korznikova, J. A. Baimova, M. G. Velarde. Phys. Usp. 59, 446 (2016). Crossref
41. R. T. Murzaev, R. I. Babicheva, K. Zhou, E. A. Korznikova, S. Y. Fomin, V. I. Dubinko, S. V. Dmitriev. Eur. Phys. J. B. 89, 168 (2016). Crossref
42. E. Barani, I. P. Lobzenko, E. A. Korznikova, E. G. Soboleva, S. V. Dmitriev, K. Zhou, A. M. Marjaneh. Eur. Phys. J. B. 90, 38 (2017). Crossref
43. P. V. Zakharov, M. D. Starostenkov, A. M. Eremin, E. A. Korznikova, S. V. Dmitriev. Phys. Solid State. 59, 223 (2017). Crossref
44. A. P. Chetverikov, W. Ebeling, M. G. Velarde. Physica D. 240, 1954 (2011). Crossref
45. A. M. Bayazitov, E. A. Korznikova, I. A. Shepelev, A. P. Chetverikov, K. S. Khadiullin, E. A. Sharapov, P. V. Zakharov, S. V. Dmitriev. IOP Conference Series: Materials Science and Engineering. 447, 012040 (2018). Crossref
46. A. Moradi Marjaneh, D. Saadatmand, I. Evazzade, R. I. Babicheva, E. G. Soboleva, N. Srikanth, K. Zhou, E. A. Korznikova, S. V. Dmitriev. Phys. Rev. E. 98, 023003 (2018). Crossref
47. S. V. Dmitriev, E. A. Korznikova, A. P. Chetverikov, J. Exp. Theor. Phys. 126, 347 (2018). Crossref
48. S. V. Dmitriev, N. N. Medvedev, A. P. Chetverikov, K. Zhou, M. G. Velarde. Phys. Status Solidi RRL. 11, 1700298 (2017). Crossref
49. A. P. Chetverikov, I. A. Shepelev, E. A. Korznikova, A. A. Kistanov, S. V. Dmitriev, M. G. Velarde. Computational Condensed Matter. 13, 59 (2017). Crossref
50. Yu. A. Kosevich. IOP Conf. Series: Journal of Physics: Conf. Series. 833, 012021 (2017). Crossref
51. B. B. Straumal, X. Sauvage, B. Baretzky, A. A. Mazilkin, R. Z. Valiev. Scripta Mater. 70, 59 (2014). Crossref
52. B. Straumal, A. Korneva, P. Zieba. Arch. Civil Mech. Eng. 14, 242 (2014). Crossref
53. B. B. Straumal, A. R. Kilmametov, Y. O. Kucheev, K. I. Kolesnikova, A. Korneva, P. Zieba, B. Baretzky. Jetp Lett. 100, 376 (2014). Crossref
54. C. M. Cepeda-Jimenez, J. I. Beltran, A. Hernando, M. A. Garcia, F. Yndurain, A. Zhilyaev, M. T. Perez-Prado. Acta Mater. 123, 206 (2017). Crossref
55. R. I. Garber, A. I. Fedorenko. Sov. Phys. Usp. 7, 479 (1965). Р.И. Гарбер, А.И. Федоренко. Crossref
56. E. A. Korznikova, I. A. Shepelev, A. P. Chetverikov, S. V. Dmitriev, S. Y. Fomin, K. Zhou. J. Exp. Theor. Phys. 127, 1009 (2018). Crossref
57. A. M. Iskandarov, N. N. Medvedev, P. V. Zakharov, S. V. Dmitriev. Comput. Mater. Sci. 47, 429 (2009). Crossref

Similar papers

Funding

1. Grant of the President of the Russian Federation for state support of young Russian scientists - MD-3639.2019.2
2. Russian Science Foundation - 18-72-00006