Self-diffusion in melts of Ni-Al and Ti-Al systems: molecular dynamics study

G.M. Poletaev ORCID logo , Y.V. Bebikhov ORCID logo , A.S. Semenov ORCID logo , M.D. Starostenkov show affiliations and emails
Received 14 September 2021; Accepted 08 October 2021;
Citation: G.M. Poletaev, Y.V. Bebikhov, A.S. Semenov, M.D. Starostenkov. Self-diffusion in melts of Ni-Al and Ti-Al systems: molecular dynamics study. Lett. Mater., 2021, 11(4) 438-441
BibTex   https://doi.org/10.22226/2410-3535-2021-4-438-441

Abstract

Self-diffusion parameters for melts of Ni-Al and Ti-Al systems, depending on the concentration of the components, have found by the method of molecular dynamicsSelf-diffusion in liquid alloys of Ni-Al and Ti-Al systems, depending on the concentration of the components, as well as in pure metals Al, Ni, and Ti, has been studied using the molecular dynamics method. Knowledge of the diffusion parameters in melts of binary systems, such as Ni-Al and Ti-Al, is necessary for a more detailed understanding and prediction of the processes occurring during combustion synthesis and in the manufacture of wares by melt casting. For the considered systems, self-diffusion characteristics (activation energy and preexponential factor in the corresponding Arrhenius equation) are found separately for atoms of different types. Good agreement of diffusion characteristics with experimental data was obtained for pure metal melts, which indicates the physical realism of the molecular dynamics model and EAM potentials used. In addition to pure metals, three component ratios were considered for each system: A75B25, A50B50 and A25B75. According to the data obtained, the activation energy of diffusion substantially depends on the concentration of the components, and the highest, among the considered compositions, for Ni75Al25 for Ni-Al system and for Ti50Al50 for Ti-Al system. At the same time, no significant predominance of diffusion mobility of atoms of different types was observed for all the mixture compositions considered.

References (25)

1. D. B. Miracle. Acta Metallurgica et Materialia. 41, 649 (1993). Crossref
2. T. M. Pollock, S. Tin. Journal of Propulsion and Power. 22, 361 (2006). Crossref
3. J. Lapin. Proceedings of the Metal. 19 (21.5), 2019 (2009).
4. T. Tetsui. Rare Metals. 30, 294 (2011). Crossref
5. Q. Wu, J. Wang, Y. Gu, Y. Guo, G. Xu, Y. Cui. J. Phase Equilib. Diffus. 39, 724 (2018). Crossref
6. N. Thiyaneshwaran, K. Sivaprasad, B. Ravisankar. Scientific Reports. 8, 16797 (2018). Crossref
7. H. Wu, Sh. Zhang, H. Hu, J. Li, J. Wu, Q. Li, Zh. Wang. Intermetallics. 110, 106483 (2019). Crossref
8. J.-G. Luo, V. L. Acoff. Welding Journal. 79, 239-s (2000).
9. J. Rusing, Ch. Herzig. Scripta Metallurgica et Matetialia. 33, 561 (1995). Crossref
10. Y. Mishin, Ch. Herzig. Acta Materialia. 48 (3), 589 (2000). Crossref
11. S. C. Deevi, V. K. Sikka. Intermetallics. 4 (5), 357 (1996). Crossref
12. E. Sondermann, F. Kargl, A. Meyer. Physical Review B. 93, 184201 (2016). Crossref
13. N. Jakse, A. Pasturel. Scientific Reports. 3, 3135 (2013). Crossref
14. G. P. Purja Pun, Y. Mishin. Philosophical Magazine. 89, 3245 (2009). Crossref
15. R. R. Zope, Y. Mishin. Physical Review B. 68, 024102 (2003). Crossref
16. Y.-K. Kim, H.-K. Kim, W.-S. Jung, B.-J. Lee. Computational Materials Science. 119, 1 (2016). Crossref
17. Q.-X. Pei, M. H. Jhon, S. S. Quek, Z. Wu. Computational Materials Science. 188, 110239 (2021). Crossref
18. G. M. Poletaev, A. A. Sitnikov, V. Yu. Filimonov. Letters on Materials. 11 (2), 204 (2021). Crossref
19. G. M. Poletaev, M. D. Starostenkov. Physics of the Solid State. 52 (6), 1146 (2010). Crossref
20. G. M. Poletaev, I. V. Zorya. Journal of Experimental and Theoretical Physics. 131 (3), 432 (2020). Crossref
21. G. M. Poletaev, R. Y. Rakitin. Physics of the Solid State. 63 (5), 682 (2021). Crossref
22. F. Demmel, D. Szubrin, W.-C. Pilgrim, C. Morkel. Physical Review B. 84, 014307 (2011). Crossref
23. F. Kargl, H. Weis, T. Unruh, A. Meyer. J. of Physics: Conf. Series. 340, 012077 (2012). Crossref
24. A. Meyer. EPJ Web of Conferences. 83, 01002 (2015). Crossref
25. J. Horbach, R. E. Rozas, T. Unruh, A. Meyer. Physical Review B. 80, 212203 (2009). Crossref

Similar papers

Funding

1. Ministry of Science and Higher Education of the Russian Federation - FZMM-2020-0002