Ab initio modeling of dynamic stability of silicon prismanes

M.A. Gimaldinova, A.I. Kochaev ORCID logo , M.M. Maslov show affiliations and emails
Received: 14 March 2020; Revised: 14 April 2020; Accepted: 20 April 2020
Citation: M.A. Gimaldinova, A.I. Kochaev, M.M. Maslov. Ab initio modeling of dynamic stability of silicon prismanes. Lett. Mater., 2020, 10(3) 283-287
BibTex   https://doi.org/10.22226/2410-3535-2020-3-283-287

Abstract

The Letter presents a detailed analysis of the isomerization and decomposition mechanisms of silabiprismanes. Their thermokinetic parameters in the Arrhenius law are determined, and estimations of their lifetimes at various temperatures are given.We present the results of a study on the dynamic stability of silabiprismanes by means of the density functional theory. Silabiprismanes present an elementary case of a particular type of silicon nanotubes with an extremely small cross-section, constructed from dehydrogenated molecules of cyclosilanes (silicon rings). Unlike higher polysilaprismanes, they are formed by only three silicon rings and described by the chemical formula (Sin)3H2n. In the presented study, we limited ourselves to the cases n = 5 ÷ 7. We focused on a detailed review of the mechanisms of isomerization and decomposition. Configurations of the corresponding transition states were determined, and the kinetic parameters in the Arrhenius law (activation energy and frequency factor) were evaluated. Silabiprismanes are found to be much more stable compounds than their carbon analogous. Their lifetimes at room temperature achieve hundreds of seconds, but at 200 K, their stability increases significantly. Thus, their lifetimes are sufficiently high for the identifying and studying of silicon biprismanes, but not for their industrial applications. Therefore, unsubstituted silabiprismanes require lower temperatures of operation, and their applicability is restricted. Although the general pyrolysis path is the same for all considered cages, its features strongly and non-monotonically depend on n. It is confirmed that the hexagonal and heptagonal silabiprismanes are much more stable than the pentagonal one. We obtained the absence of a direct correlation between the thermodynamic and kinetic stabilities of the silicon cages under consideration.

References (32)

1. L. K. Rysaeva, J. A. Baimova, D. S. Lisovenko, V. A. Gorodtsov, S. V. Dmitriev. Phys. Status Solidi B. 2018, 1800049 (2018). Crossref
2. E. A. Belenkov, Y. A. Zinatulina. Phys. Solid State. 52 (4), 868 (2010). Crossref
3. E. A. Belenkov, V. V. Mavrinskii, V. A. Greshnyakov, M. M. Brzhezinskaya. IOP Conf. Series: Materials Science and Engineering. 537, 022070 (2019). Crossref
4. L. K. Rysaeva, J. A. Baimova, S. V. Dmitriev, D. S. Lisovenko, V. A. Gorodtsov, A. I. Rudskoy. Diamond and Related Materials. 97, 107411 (2019). Crossref
5. L. K. Rysaeva, D. S. Lisovenko, V. A. Gorodtsov, J. A. Baimova. Comp. Mat. Sci. 172, 109355 (2019). Crossref
6. F. Pichierri. Chem. Phys. Lett. 612, 198 (2014). Crossref
7. E. G. Lewars. Modeling Marvels: Computational Anticipation of Novel Molecules. The Netherlands, Dordrecht, Springer (2008) 282p. Crossref
8. P. E. Eaton, T. W. Cole Jr. J. Am. Chem. Soc. 86, 3157 (1964). Crossref
9. T. J. Katz, N. Acton. J. Am. Chem. Soc. 95 (8), 2738 (1973). Crossref
10. P. E. Eaton, Y. S. Or, S. J. Branca. J. Am. Chem. Soc. 103 (8), 2134 (1981). Crossref
11. S. Kuzmin, W. W. Duley. Fullerenes, Nanotubes and Carbon Nanostructures. 20 (8), 730 (2012). Crossref
12. K. P. Katin, S. A. Shostachenko, A. I. Avkhadieva, M. M. Maslov. Advances in Physical Chemistry. 2015, 506894 (2015). Crossref
13. A. Equbal, S. Srinivasan, N. Sathyamurthy. J. Chem. Sciences. 129 (7), 911 (2017). Crossref
14. H. Matsumoto, K. Higuchi, S. Kyushin, M. Goto. Angewandte Chemie International Edition in English. 31 (10), 1354 (1992). Crossref
15. A. Sekiguchi, T. Yatabe, C. Kabuto, H. Sakurai. J. Am. Chem. Soc. 115 (13), 5853 (1993). Crossref
16. M. A. Gimaldinova, K. P. Katin, M. A. Salem, M. M. Maslov. Lett. Mater. 8 (4), 454 (2018). Crossref
17. K. P. Katin, K. S. Grishakov, M. A. Gimaldinova, M. M. Maslov. Comp. Mat. Sci. 174, 109480 (2020). Crossref
18. H. Vach. Chem. Phys. Lett. 614 (2014), 199 (2014). Crossref
19. L. V. Duong, E. Matito, M. Solà, H. Behzadi, M. T. Nguyen, M. J. Momeni. Phys. Chem. Chem. Phys. 20, 23467 (2018). Crossref
20. H. Vach. Nano Letters. 11 (12), 5477 (2011). Crossref
21. G. A. Dolgonos, K. Mekalka. J. Comp. Chem. 36 (28), 2095 (2015). Crossref
22. M. V. Gordeychuk, K. P. Katin, K. S. Grishakov, M. M. Maslov. Int. J. Quantum Chemistry. 118 (15), e25609 (2018). Crossref
23. K. P. Katin, M. B. Javan, M. M. Maslov, A. Soltani. Chem. Phys. 487 (2017), 59 (2017). Crossref
24. D. W. Boukhvalov. Phys. Chem. Chem. Phys. 12 (47), 15367 (2010). Crossref
25. G. H. Vineyard. J. Phys. Chem. Sol. 3 (1-2), 121 (1957). Crossref
26. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery. J. Comp. Chem. 14 (11), 1347 (1993). Crossref
27. A. D. Becke. J. Chem. Phys. 98 (7), 5648 (1993). Crossref
28. C. Lee, W. Yang, R. G. Parr. Phys. Rev. B. 37 (2), 785 (1988). Crossref
29. R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople. J. Chem. Phys. 72 (1), 650 (1980). Crossref
30. K. P. Katin, M. M. Maslov. Molecular Simulation. 44 (9), 703 (2018). Crossref
31. S. A. Shostachenko, M. M. Maslov, V. S. Prudkovskii, K. P. Katin. Physics of the Solid State. 57 (5), 1023 (2015). Crossref
32. M. M. Maslov, K. P. Katin, A. I. Avkhadieva, A. I. Podlivaev. Russ. J. Phys. Chem. B. 8 (2), 152 (2014). Crossref

Similar papers

Funding

1. Russian Science Foundation - Grant No. 18-72-00183