Temperature of polymorphic transformation of PT-3V titanium alloy produced by selective laser melting method

V.V. Pyaterikova, I.V. Pikulin, D.A. Kaydarov, O.V. Trusov, V.A. Khokhlov, I.S. Ryzhov, E.V. Schedrina, A.V. Samokhin show affiliations and emails
Received 12 January 2024; Accepted 07 April 2024;
Citation: V.V. Pyaterikova, I.V. Pikulin, D.A. Kaydarov, O.V. Trusov, V.A. Khokhlov, I.S. Ryzhov, E.V. Schedrina, A.V. Samokhin. Temperature of polymorphic transformation of PT-3V titanium alloy produced by selective laser melting method. Lett. Mater., 2024, 14(2) 150-154
BibTex   https://doi.org/10.48612/letters/2024-2-150-154

Abstract

Dilatograms of PT-3V SLM-specimen and a rod.Three research methods were used to measure temperature of polymorphic transformation of PT-3V titanium alloy produced by selective laser melting (SLM) technology, namely, computational, calorimetric and dilatometric. Comparison of the obtained PT-3V-SLM values with the PT-3V alloy produced by a hot-rolled stock technology showed that the PT-3V-SLM specimens have values of the α + β → β transformation higher than Tpt values indicated in references for the PT-3V alloy. Results obtained in the effort are new and contain scientific novelty and practical significance.

References (20)

1. А. А. Ilyin, B. A. Kolachev, I. S. Polkin, Titanium Alloys. Composition, Structure, Properties: Reference Book. Мoscow, VILS-MATI, 2009, 520 p. (in Russian) [А. А Ильин, Б. А. Колачев, И. С. Полькин, Титановые сплавы, Состав, структура, свойства: справочник, Москва, ВИЛС-МАТИ, 2009, 520 с.].
2. Yu. G. Dragunov, А. S. Zubchenko (Eds.), Grades of Steels and Alloys. Reference Book. 4th edn, revised and updated, Мoscow, 2014, 1216 p. (in Russian) [Ю. Г. Драгунова и А. С. Зубченко (ред.), Марочник сталей и сплавов. 4-е изд., переработ. и доп., Москва, 2014, 1216 с.].
3. E. A. Borisova, G. A. Bochvar, M. Ya. Brun, et al, Titanium Alloys. Metallography of Alloys, Moscow, Metallurgiya, 1980, 464 p. (in Russian) [Е. А. Борисова, Г. Ф. Бочвар, М. Я. Брун и др., Титановые сплавы. Металлография титановых сплавов, Москва, Металлургия, 1980, 464 с.].
4. Yu. V. Loschinin, S. I. Pakhomkin, A. S. Fokin, The influence of heating rate when studying phase transformations in aluminum alloys using differential scanning calorimetry, Aviation Materials and Technologies 2, 3 - 6 (2011). (in Russian) [Ю. В. Лощинин, С. И. Пахомкин, А. С. Фокин, Влияние скорости нагревания при исследовании фазовых превращений в алюминиевых сплавах методом ДСК, Авиационные материалы и технологии 2, 3 - 6 (2011).].
7. B. A. Kolachev, Yu. B. Egorova, S. B. Belova, On the temperature dependence of α+β→β-transition in commercial titanium alloys on their chemical composition, Metal Sci. and Thermal Treatment of Mater. 8 (2008) 10 -14. (in Russian) [Б. А. Колачев, Ю. Б. Егорова, С. Б. Белова, О связи температуры α+β→β-перехода, Металловедение и термическая обработка материалов 8 (2008) 10 - 14.].
8. Q. Liao, Ch. Deng, H.-L. Qu, et al, Effect of Deformation Rate on Microstructure and Tensile Properties of Cold Rolled Ti-3Al-2.5V Alloy Tube, Conf. Ser.: Ti 2011 - Proc. 12th World Conf. on Titanium. 1 (2012) 278 - 281.
9. S. P. Belov, M. Ya. Brun, S. G. Glazunov, et. al, Metal Science of Titanium and Its Alloys, B. А. Kolachev, S. G. Glazunov (Eds.), Мoscow, Metallurgiya, 1992, 352 p. (in Russian) [С. П. Белов, М. Я. Брун, С. Г. Глазунов и др., Металловедение титана и его сплавов, Б. А. Колачева, С. Г. Глазунова (ред.), Москва, Металлургия (1992) 352 с.].
11. А. А. Popov, D. V. Gadeev, A. G. Illarionov, S. L. Demakov, Method for determining temperature of full polymorphous transformation of heat-resistant two-phase titanium alloys of (alpha+beta)-martensitic class. Patent RU 2498280 C1. 18 May 2012. (in Russian) [А. А. Попов, Д. В. Гадеев, А. Г. Илларионов, С. Л. Демаков, Способ определения температуры полиморфного превращения жаропрочных двухфазных титановых сплавов (альфа+бета)-мартенситного класса. Патент RU 2498280 C1 от 18.05.2023.].
12. P. Tarin, N. Corral, A. G. Simon, et al, Evolution of Alpha-Beta Transformation in Ti-3Al-2.5V Alloy. Microstructural Changes and Properties Obtained, Conf. Ser.: Ti 2011 - Proc. 12th World Conf. on Titanium. 1, (2012) 481 - 484.
13. G. A. Potemkin, T. V. Korshunova, T. A. Morozova. Thermal Analysis of Materials: Theory, Methodologies, Practical Applications, Мoscow, Lambert Academic Publishing (2020) 287 p. (in Russian) [Г. А. Потемкин, Т. В. Коршунова, Т. А. Морозова. Термический анализ материалов: Теория, методики, практические приложения, Москва, Lambert Academic Publishing (2020) 287 с.].
14. International Centre for Diffraction Data, Website: http://www.icdd.com (accessed 20 June, 2024).
15. ASTM E228-2022 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer.

Similar papers

Funding

1. Private Enterprise for Nuclear Industry Scientific Development “Science and Innovations“ - ЕОТP-МТ-354