Molecular dynamics simulation of diffusion along general high-angle grain boundaries in copper and vanadium

A.V. Vyazmin ORCID logo , A.G. Lipnitskii, V.N. Maksimenko, D.O. Poletaev ORCID logo , A.I. Kartamyshev show affiliations and emails
Received: 01 September 2023; Revised: 03 November 2023; Accepted: 16 November 2023
Citation: A.V. Vyazmin, A.G. Lipnitskii, V.N. Maksimenko, D.O. Poletaev, A.I. Kartamyshev. Molecular dynamics simulation of diffusion along general high-angle grain boundaries in copper and vanadium. Lett. Mater., 2023, 13(4s) 450-455
BibTex   https://doi.org/10.22226/2410-3535-2023-4-450-455

Abstract

Results of calculation of diffusion characteristics of grain boundaries in vanadium.In this paper, atomistic simulations were used to calculate the characteristics of grain boundary diffusion, estimation of which from the results of experimental studies is limited. The methods for specifying interatomic interactions, constructing model samples, and processing the results of molecular dynamics simulations for calculation of grain boundary diffusion coefficients in accordance with those determined from the results of diffusion experiments in polycrystals are discussed and new approach is proposed. The proposed approach is illustrated on the example of molecular dynamics simulations of general high-angle grain boundaries in copper and vanadium. On the example of copper, a good agreement between calculated within our approach and experimental grain boundary diffusion characteristics was demonstrated. For vanadium, a theoretical prediction of temperature dependence of product of its grain boundary self-diffusion coefficient on the effective grain boundary width is given.

References (35)

1. Y. R. Kolobov. Diffusion-Controlled Processes at Grain Boundaries and Plasticity of Metallic Composite. Novosibirsk, Nauka (1998). 184 p. (in Russian) [Ю. Р. Колобов. Диффузионно-контролируемые процессы на границах зерен и пластичность металлических поликристаллов. Новосибирск, Наука (1998) 184 с.].
2. I. Kaur, Y. Mishin, W. Gust. Fundamentals of Grain and Interphase Boundary Diffusion. 3rd edn. Chichester, Wiley (1995) 536 p.
3. P. Heitjans, J. Kärger. Diffusion in condensed matter: methods, materials, models. New York, Springer Science & Business Media (2005) 955 p.
4. B. Bokstein, A. Rodin. Diff. Found. 1, 99 (2014). Crossref
5. W. Gust, S. Mayer, A. Bögel, B. Predel. J. Phys. Colloq. 46 (C4), 537 (1985). Crossref
6. A. M. Brown, M. F. Ashby. Acta Metall. 28 (8), 1085 (1980). Crossref
7. M. Köppers, Y. Mishin, C. Herzig. Acta Metall. Materialia. 42 (8), 2868 (1994). Crossref
8. T. Surholt, C. Herzig. Acta Mater. 45 (9), 3817 (1997). Crossref
9. I. I. Novoselov, A. Y. Kuksin, A. V. Yanilkin. Phys. Solid State. 56, 1025 (2014). Crossref
10. V. V. Popov, M. E. Stupak, M. G. Urazaliev. JPED. 43 (4), 401 (2022). Crossref
11. F. Junhong, Z. Weiqiang. Phys. Scr. 98 (3), 035006 (2023). Crossref
12. A. Seoane, D. Farkas, X. M. Bai. J. Mater. Sci. 58, 8845 (2023). Crossref
13. S. Starikov, M. Mrovec, R. Drautz. Acta Mater. 188, 560 (2020). Crossref
14. M. R. Sørensen, Y. Mishin, A. F. Voter. Phys. Rev. B. 62 (6), 3658 (2000). Crossref
15. I. Chesser, Y. Mishin. Commun. Mater. 3 (1), 90 (2022). Crossref
16. J. C. Fisher. J. Appl. Phys. 22 (1), 74 (1951). Crossref
17. A. G. Lipnitskii, V. N. Saveliev. Comput. Mater. Sci. 121, 67 (2016). Crossref
18. V. N. Maksimenko, A. G. Lipnitskii, V. N. Saveliev, I. V. Nelasov, A. I. Kartamyshev. Comput. Mater. Sci. 198, 110648 (2021). Crossref
19. V. N. Maksimenko, A. G. Lipnitskii, A. I. Kartamyshev, D. O. Poletaev, Y. R. Kolobov. Comput. Mater. Sci. 202, 110962 (2022). Crossref
20. A. I. Kartamyshev, A. G. Lipnitskii, V. N. Maksimenko, A. V. Vyazmin, I. V. Nelasov, D. O. Poletaev. Comput. Mater. Sci. 228, 112284 (2023). Crossref
21. A. I. Kartamyshev, A. G. Lipnitskii, V. N. Saveliev, V. N. Maksimenko, I. V. Nelasov, D. O. Poletaev. Comput. Mater. Sci. 160, 30 (2019). Crossref
22. R. Car, M. Parrinello. Phys. Rev. Lett. 55 (22), 2471 (1985). Crossref
23. W. Kohn, L. J. Sham. Phys. Rev. 140 (4A), 1133 (1965). Crossref
24. Y. Mishin. Acta Mater. 214, 116980 (2021). Crossref
25. K. Lejaeghere, J. Jaeken, V. Van Speybroeck, S. Cottenier. Phys. Rev. B. 89 (1), 014304 (2014). Crossref
26. K. Lejaeghere, V. Van Speybroeck, G. Van Oost, S. Cottenier. Crit. Rev. Solid State Mater. 39 (1), 1 (2014). Crossref
27. Y. Mishin, D. Farkas, M. J. Mehl, D. A. Papaconstantopoulos. Phys. Rev. B. 59 (5), 3393 (1999). Crossref
28. Y. S. Lin, G. P. P. Pun, Y. Mishin. Comput. Mater. Sci. 205, 111180 (2022). Crossref
29. D. O. Poletaev, A. G. Lipnitskii, V. N. Maksimenko, Y. R. Kolobov, A. G. Beresnev, M. S. Gusakov. Comput. Mater. Sci. 216, 111841 (2023). Crossref
30. A. G. Lipnitskii, I. V. Nelasov, Y. R. Kolobov. DDF. 309 - 310, 45 (2011). Crossref
31. A. Stukowski. Model. Simul. Mat. Sci. Eng. 18 (1), 015012 (2009). Crossref
32. S. V. Divinski, B. S. Bokstein. DDF. 309 - 310, 1 (2011). Crossref
33. J. Pelleg. Philos. Mag. 29 (2), 383 (1974). Crossref
34. D. B. Butrymowicz, J. R. Manning, M. E. Read. JPCRD. 2 (3), 643 (1973). Crossref
35. D. Gupta. Diffusion processes in advanced technological materials. Norwich, William Andrew (2005) 532 p. Crossref

Similar papers

Funding

1. Russian Science Foundation - 22-72-10026