Complexions at carbide / binder grain boundaries of Re-containing submicron cemented carbide

A.A. Zaitsev ORCID logo , A.A. Meledin show affiliations and emails
Received 29 July 2022; Accepted 30 October 2022;
Citation: A.A. Zaitsev, A.A. Meledin. Complexions at carbide / binder grain boundaries of Re-containing submicron cemented carbide. Lett. Mater., 2023, 13(1) 9-13
BibTex   https://doi.org/10.22226/2410-3535-2023-1-9-13

Abstract

Carbide/binder grain boundaries in a FIB lamella prepared from the WC-Co-Re cemented carbide were examined by high-angle annular dark field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy at a high resolution. Rhenium was found to segregate at the grain boundaries forming complexions of 2 to 3 atomic monolayers, which presumably consist of mixed W-Re carbide.Samples of submicron WC-Co-Re cemented carbide were produced and examined by different techniques. The microstructure of the samples is fine and extremely uniform indicating the strong inhibiting effect of Re with respect to the WC grain growth during liquid-phase sintering. Results of examination of hot hardness at a temperature of 500°C provide evidence for the significantly higher hardness value of the WC-Co-Re cemented carbide in comparison with that of a conventional submicron WC-Co grade. Studies of creep rates of WC-Co-Re and WC-Co cemented carbides at 800°C indicated dramatically improved high-temperature creep-resistance of the Re-containing cemented carbide. Carbide / binder grain boundaries in a FIB lamella prepared from the WC-Co-Re cemented carbide were examined by high-angle annular dark field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy at a high resolution. Rhenium was found to segregate at the grain boundaries forming complexions of 2 to 3 atomic monolayers, which presumably consist of mixed W-Re carbide. Such complexions are believed to suppress the phenomena of grain boundary sliding at elevated temperatures and WC grain growth at sintering temperatures thus dramatically improving the high-temperature creep-resistance of the WC-Co-Re material in comparison with conventional WC-Co cemented carbide.

References (17)

1. D. Mukherji, J. Rösler, J. Wehrs, H. Eckerlebe. Adv. Mater. Res. 1, 3 (2012). Crossref
2. J. Rösler, D. Mukherji, T. Baranski. Avd. Engin. Mat. 9, 10 (2007). Crossref
3. I. Konyashin, S. Farag, B. Ries, B. Roebuck. Int. J. Refract. Met. Hard. Mater. 78, 247 (2019). Crossref
4. I. N. Chaporova, V. I. Kudryavtzeva, Z. N. Sapronova. Sintered cemented carbide. Patent SU № 616814. 22 May 1975. (in Russian) [И. Н Чапорова, В. И. Кудрявцева, З. Н. Сапронова. Спеченный твердый сплав. Патент СССР № 616814 от 25.05.1975 г.].
5. I. N. Chaporova, Z. N. Sapronova. Investigation of the W-C-Re-Co System. Theory and Practice of Cemented Carbide Application: Thematic collection of scientific works. Moscow (1991), pp. 12 - 15. (in Russian) [И. Н. Чапорова, З. Н. Сапронова. Исследование системы W-C-Re-Co. Теория и практика производства и применения твердых сплавов: тематический сборник научных трудов. Москва. ВНИИТС (1991) с. 12 -15.].
6. I. N. Chaporova, Z. N. Sapronova, N. I. Dejkina, G. F. Karasev. Mechanical and Performance Properties of the WC-Re-Co Hardmetals. Properties and Application of Cemented Carbides. Proceedings of All-Union Research Institute of Hardmetals. Moscow, VNIITS (1991) pp. 30 - 34. (in Russian) [И. Н. Чапорова, З. Н. Сапронова, Н. И. Дежкина, Г. Ф. Карасёв. Механические и эксплуатационные свойства твёрдых сплавов WC-Re-Co. Свойства и применение спеченных твердых сплавов: Сб. науч. Трудов ВНИИТС. Москва, ВНИИТС (1991) с. 30 - 34.].
7. I. N. Chaporova, V. I. Kudryavtzeva, Z. N. Sapronova. Investigation of Structure and Properties of Alloys of the WC-Re-Co System. Quality and Effectiveness of Hardmetals. Proceedings of All-Union Research Institute of Hardmetals. Moscow, VNIITS (1984) p. 7 - 9. (in Russian) [И. Н. Чапорова, В. И. Кудрявцева, З. Н. Сапронова Исследование структуры и свойств сплавов системы WC-Re-Co. Качество и эффективность применения твердых сплавов: Сб. науч. трудов ВНИИТС. Москва, Металлургия (1984) c. 7 - 9.].
8. A. F. Lisovsky, N. V. Tkachenko, V. Kebko. Int. J. Refract. Met. Hard Mater. 10, 1 (1991). Crossref
9. A. F. Lisovskii. Powder Metall. Met. Ceram. 39, 9 (2000). Crossref
10. I. Konyashin, A. Schwedt. Mater. Lett. 249, 57 (2019). Crossref
11. X. Liu, X. Song, H. Wang, X. Liu, F. Tang, H. Lu. Acta Mater. 149, 164 (2018). Crossref
12. I. Konyashin, A. Sologubenko, T. Weirich, B. Ries. Mater. Lett. 187, 7 (2017). Crossref
13. S. Lay, S. Hamar-Thibault, A. Lackner. Int. J. Refract. Met. Hard Mater. 20, 1 (2002). Crossref
14. J. Weidow, H.-O. Andrén. Int. J. Refractory Met. Hard Mater. 29, 1 (2011). Crossref
15. S. Farag, I. Konyashin, B. Ries. Int. J. Refract. Met. Hard Mater. 77, 12 (2018). Crossref
16. R. J. Fries, J. E. Cummings, C. G. Hoffman, S. A. Daily. J. Nucl. Mat. 39, 35 (1971). Crossref
17. D. Waldorf, M. Stender, S. Liu, D. Norgan. Proceedings of the International Conference on Manufacturing Science and Engineering. Evanston, Illinois, USA (2008) pp. 1 - 9. Crossref

Similar papers

Funding

1. Ministry of Science and Higher Education of the Russian Federation under the state assignment - Project No. 0718-2020-0034