Kinetics of the formation of diffusion titanium coatings on the surfaces of hard alloys during isothermal mass transfer of titanium in the Pb-Bi-Li melt

E.E. Bobylyov ORCID logo , E.G. Sokolov ORCID logo show affiliations and emails
Received: 22 May 2023; Revised: 23 August 2023; Accepted: 29 August 2023
Citation: E.E. Bobylyov, E.G. Sokolov. Kinetics of the formation of diffusion titanium coatings on the surfaces of hard alloys during isothermal mass transfer of titanium in the Pb-Bi-Li melt. Lett. Mater., 2023, 13(4) 335-340
BibTex   https://doi.org/10.22226/2410-3535-2023-4-335-340

Abstract

Elements composition and coating mechanism formation on WC-8%Co and WC-15%TiC-6%Co hard alloysThis paper describes the technology for manufacturing diffusion titanium coatings on cemented carbides, WC-Co and TiC-WC-Co (VK8 and T15K6 hard alloys respectively). The purpose of the work is to elucidate the mechanism and kinetics of the formation of diffusion coatings on cemented carbides in isothermal mass transfer of titanium in the Pb-Bi-Li eutectic. It has been demonstrated that in isothermal Pb-Bi-Li exposure of cemented carbides with powdered titanium added at 950 to 1100°C temperatures, mass transfer of titanium to the cemented carbide surface occurs. Meanwhile, an 8 to 32 µm coating is formed, depending on the cemented carbide composition, process temperature, and time. The greatest thickness of the coating has been obtained at 1100°C and exposure to the processing medium for 120 minutes. The coatings are formed from the TiC titanium carbide, with α-Ti, the Ti2Co intermetallic compound, and the WC tungsten carbide present, too. For the T15K6 hard alloy, concentration of titanium reaches 93 % in surface layers and remains so at the depth of up to 15 µm. For the VK8 hard alloy, the surface concentration of titanium was 87.6 %, remaining the same at the depth of up to 20 µm.

References (20)

1. K. Bobzin. CIRP journal of manufacturing science and technology. 18, 1 (2017). Crossref
2. H. Caliskan, P. Panjan, C. Curbanoglu. Reference Module in Materials Science and Materials Engineering. Comprehensive Materials Finishing. 3, 230 (2017). Crossref
3. S. V. Grubyi, P. A. Chaevskiy. BMSTU journal of mechanical engineering, 1 (754), 13 (2023). (in Russian) [С. В. Грубый, П. А. Чаевский. Известия высших учебных заведений. Машиностроение. 1 (754), 13 (2023).]. Crossref
4. B. Ya. Mokritskiy, E. S. Sitamov, A. G. Serebrennikova. iPolytech Journal. 23, 246 (2019). (in Russian) [Б. Я. Мокрицкий, Э. С. Ситамов, А. Г. Серебренникова. iPolytech Journal. 23, 246 (2019).]. Crossref
5. S. K. Khrais, Y. J. Lin. Wear. 262 (1-2), 64 (2007). Crossref
6. J. Liang, Y. Liu, S. Yang, X. Yin, S. Chen, C. Liu. Surface and Coatings Technology. 445, 128727 (2022). Crossref
7. J. N. Sahu, Sasikumar C. Journal of Materials Processing Technology. 263, 285 (2019). Crossref
8. M. M. Abdul, et al. Materials Science Forum. 819, 76 (2015). Crossref
9. J. B. Liu, L. M. Wang, J. S. Jiang, G. M. Cao. Advanced Materials Research. 291 - 294, 167 (2011). Crossref
10. V. Singh, A. K. Singla, A. Bansal. Tribology International. 176, 107874 (2022). Crossref
11. F. Pedraza, C. Tuohy, L. Whelan, A. D. Kennedy. Materials Science Forum. 461-464, 305 (2004). Crossref
12. A. G. Sokolov, E. E. Bobylyov. J. Sib. Fed. Univ. Eng. & Technol. 13 (4), 502 (2020). (in Russian) [А. Г. Соколов, Э. Э. Бобылёв. Журнал СФУ. Техника и технологии. 13 (4), 502 (2020).]. Crossref
13. V. P. Artem’ev, E. G. Sokolov, S. M. Jurchik. The method of chemical-thermal treatment of products pressed from metal powders. Patent Ru № 2174059, 27 September 2001. (in Russian) [В. П. Артемьев, Е. Г. Соколов, С. М. Юрчик. Способ химико-термической обработки изделий, спрессованных из металлических порошков. Патент на изобретение RU 2174059 от 27.09.2001.].
14. E. G. Sokolov, V. P. Artem'ev. Metal Science and Heat Treatment. 44, 459 (2002). Crossref
15. E. E. Bobylyov. Engineering Journal: Science and Innovation. 12, 1 (2020). (in Russian) [Э. Э. Бобылёв. Инженерный журнал: наука и инновации. 12, 1 (2020).]. Crossref
16. A. G. Sokolov, R. A. Popov, E. E. Bobylyov, I. D. Storozhenko. Device for diffusion metallization in the medium of low-melting liquid-metal solutions. Patent Ru № 2767108, 16 March 2021. (in Russian) [А. Г. Соколов, Р. А. Попов, Э. Э. Бобылёв, И. Д. Стороженко. Устройство для диффузионной металлизации в среде легкоплавких жидкометаллических растворов. Патент на изобретение RU 2767108 от 16.03.2022.].
17. N. P. Lyakishev. Diagrams of binary metal systems: Handbook: in 3 volumes: V. 3. Book. I (ed. by N. P. Lyakishev). Moscow, Mashinostroenie (2001) 872 p. (in Russian) [Н. П. Лякишев. Диаграммы двойных металлических систем: Справочник: в 3 т.: Т. 3. Кн. I (под общ. ред. Н. П. Лякишева). Москва, Машиностроение (2001) 872 с.].
18. M. I. Chaevskij, V. P. Artem'ev. The method of chemical-thermal treatment of steel products. Certificate of authorship SU 954502, 30 August 1982. (in Russian) [М. И. Чаевский, В. П. Артемьев. Способ химико-термической обработки стальных изделий. Авторское свидетельство SU 954502 от 30.08.1982.].
19. S. S. Kiparisov, Yu. V. Levinskij, Petrov A. P. Titanium carbide: obtaining, properties, application. Moscow, Metallurgiya (1987) 216 p. (in Russian) [С. С. Кипарисов, Ю. В. Левинский, А. П. Петров. Карбид титана: получение, свойства, применение. Москва, Металлургия (1987) 216 с.].
20. V. S. Panov, A. M. Chuvilin. Technology and properties of sintered hard alloys and products from them. Textbook for universities. Moscow, MISIS (2001) 428 p. (in Russian) [В. С. Панов, А. М. Чувилин. Технология и свойства спеченных твердых сплавов и изделий из них. Учебное пособие для вузов. Москва, МИСИС (2001) 428 с.].

Similar papers

Funding

1. The research was carried out at the expense of a grant from the Russian Science Foundation - 23-29-00706, https://rscf.ru/project/23-29-00706/