Features of the carbide phase degradation under heating and deformation

T.S. Skoblo, O.Y. Klochko ORCID logo , V.N. Romanchenko ORCID logo , E.L. Belkin show affiliations and emails
Received: 05 August 2020; Revised: 14 October 2020; Accepted: 26 October 2020
This paper is written in Russian
Citation: T.S. Skoblo, O.Y. Klochko, V.N. Romanchenko, E.L. Belkin. Features of the carbide phase degradation under heating and deformation. Lett. Mater., 2021, 11(1) 22-27
BibTex   https://doi.org/10.22226/2410-3535-2021-1-22-27


The degradation processes occurring in massive inclusions of the chromium-nickel cast iron carbide phase during deformation at high temperatures (400-600 ºС) are studied. The effect of the local deformations on easy slip of dislocations is considered. We also demonstrate that during the dislocation slip, the new phases appear and the energy dissipates.The present work reflects the results of comprehensive studies of the carbide phase behavior (cementite) in cast irons, which are widely used as a forming tool in metallurgy. This structural component determines the stable operation of the tool in production. Due to the development of new scientific approaches, special methods of structure variability analysis are being developed. Such methods allow one to have a deep look into the processes that determine the nature of degradation phenomena, including those occurring in the carbide phase. In this work, we use the results of the new techniques, which made it possible to identify degradation processes occurring inside the massive inclusions of the carbide phase of chromium-nickel cast iron during deformations at high temperatures (400 – 600°C). Here we report the significant instability of the carbide phase revealed under such processing conditions. Basing on the optical-mathematical analysis of the obtained SEM microstructure images, we show that such a carbide phase degrades under the local deformations. At the first stage of deformation, the creation of local stresses is intensified, while the subgrain boundaries and individual defects are being formed. Such individual defects (dislocations) define the degree of carbon and iron diffusion which determines the formation of a number of new phases: ferrite with various carbon saturation values, bainite, carbides of nonstoichiometric composition (such as FeC and FexCy). We also analyze the paired and triple interactions between these new phases. The influence of localization of the deformations on easy sliding of dislocations is considered. As it occurs, this process is accompanied by a decrease in the dispersion of the formed new ferrite and carbide phases, as well as in their mutual interactions. However, we show that when dislocations slip, the new ones appear. As a result, energy dissipation occurs. The obtained qualitative and quantitative representation of the carbide phase degradation during heating and deformation can be used to develop new technological processes of the production and hardening of such a material with a specific purpose taken into account.

References (20)

1. T. S. Skoblo, O. Yu. Klochko et al. Theoretical and experimental framework for prediction of structure formation and high-carbon doped alloys properties). Disa plus (2019) 278 p. (in Russian) [Т. С. Скобло, О. Ю. Клочко и др. Теоретические и экспериментальные основы прогнозирования структурообразования, свойств высокоуглеродистых легированных сплавов. Х.: Діса плюс (2019) 278 с.].
2. T. S. Skoblo et al. Industrial laboratory diagnostics of materials. 78 (6), 35 (2012). (in Russian) [Т. С. Скобло и др. Заводская лаборатория. Диагностика материалов. 78 (6), 35 (2012).].
3. T. S. Skoblo et al. Metallofiz. Noveishie Tekhnol. 40 (2), 255 (2018). (in Russian) [Т. С. Скобло и др. МФиНТ. 40 (2), 255 (2018).]. Crossref
4. M. A. Guitar et al. J. of Materials Engineering and Performance. 27, 3877 (2018). Crossref
5. U. Pranav Nayak et al. Metals. 10 (1), 30 (2020). Crossref
6. V. G. Gavriljuk. Materials Science and Engineering A. 345 (1-2), 81 (2003). Crossref
7. K. M. Yamaleev, V. A. Sandakov. Petroleum Engineering, 6 (2), 97 (2008). (in Russian) [К. М. Ямалеев, В. А. Сандаков. Нефтегазовое дело, 6 (2), 97 (2008).].
8. V. E. Gromov et al. Journal of Metastable and Nanocrvsfalline Materials. 30, 39 (2018). Crossref
9. J. Takahashi. IOP Conf. Series: Materials Science and Engineering. 219, 012007 (2017). Crossref
10. C. R. S. da Silva et al. Materials Science and Technology. 21 (5), 565 (2013). Crossref
11. T. S. Skoblo et al. High Carbon Alloy Rolling Rolls (Ed. by T. S. Skoblo). Moscow, Metallurgy (1994) 336 p. (in Russian) [Т. С. Скобло и др. Прокатные валки из высокоуглеродистых сплавов (Под ред. T. С. Скобло). Москва, Металлургия (1994) 336 с.].
12. G. A. Domrachev et al. Physics of the solid state. 46 (10), 1901 (2004). (in Russian) [Г. А. Домрачев и др. ФТТ. 46 (10), 1901 (2004).].
13. A. I. Lazarev et al. Crystallography. 41 (5), 798 (1996). (in Russian) [А. И. Лазарев и др. Кристаллография. 41 (5), 798 (1996).].
14. T. S. Skoblo et al. Lett. Mater. 10 (2), 129 (2020). (in Russian) [Т. С. Скобло и др. Письма о материалах. 10 (2), 129 (2020).]. Crossref
15. Patent UA № 137100, 10.10.2019. (in Ukrainian) [Пат. Украины № 137100, 10.10.2019.].
16. T. S. Skoblo et al. Steel in Translation. 42 (3), 261 (2012). Crossref
17. R. W. K. Honeycombe: The plastic deformation of metals. 2nd ed. Edward Arnold (Publ.) ltd., maidenhead (1984) 483 p.
18. A. Mussi et al. Philosophical Magazine. 96 (17), 1773 (2016). Crossref
19. J. Kim et al. Computational Materials Science. 173, 109375 (2020). Crossref
20. T. S. Skoblo et al. Physicochemical mechanics of materials. 56 (3), 57 (2020). (in Russian) [Т. С. Скобло и др. Физико-химическая механика материалов. 56 (3), 57 (2020).].

Similar papers