Instability of the interface between conducting materials under electrical current

R.V. Goldstein, T.M. Makhviladze, M.E. Sarychev show affiliations and emails
Received 19 October 2015; Accepted 08 February 2016;
This paper is written in Russian
Citation: R.V. Goldstein, T.M. Makhviladze, M.E. Sarychev. Instability of the interface between conducting materials under electrical current. Lett. Mater., 2016, 6(2) 98-101
BibTex   https://doi.org/10.22226/2410-3535-2016-2-98-101

Abstract

A model for estimation of the influence of vacancy electromigration in the bulks of joint conducting materials under the electrical current on stability of plane interface between them is developed. The system of equations describing the interaction of the interface profile and the mechanical stresses which arise due to the fluxes of ions and vacancies initiated by a small spatially-periodical disturbance of the interface are obtained and solved. The criteria of increase of the disturbance amplitude with time, i.e. the conditions of instability of the initially plane interface between the materials, due to the mass transfer under the electrical current are found. For the case of identical materials the ranges of values of disturbance wavelengths and current density, for which just the bulk vacancy electromigration results in the increase of disturbance amplitude with time, analytically obtained. The dependences of the boundaries of these wavelength ranges on a value and direction of the electrical current are also found. In the case of different materials the respective analysis is significantly more difficult. However the results obtained in the work give the definite grounds to consider that the corresponding conditions, at which the bulk vacancy electromigration can strongly influence on the spatial small disturbance of the interface, are possible. The results of the work can be useful for development of technological processes in microelectronics.

References (11)

1. L. Klinger, L. Levin, O. Srolovitz. J. Appl, Phys, 79. 6834-6839 (1996).
2. R.V. Goldstein, T.M. Makhviladze, M.E. Sarychev. Letters on materials. 42(3). 171 (2014) (in Russian) [Р.В. Гольдштейн, Т.М. Махвиладзе, М.Е. Сарычев. Письма о материалах. 42(3). 171 (2014)].
3. R.V. Goldstein, T.M. Makhviladze, M.E. Sarychev Surface. 1. 1 (2015) [Р.В. Гольдштейн, Т.М. Махвиладзе, М.Е. Сарычев. Поверхность. N 1. 1 (2015)].
4. K.A. Valiev, R.V. Goldstein. Yu.V. Zhitnikov et al. Microelektronika. 38. 364 (2009) (in Russian) [К.А. Валиев, Р.В. Гольдштейн, Ю.В. Житников и др. Микроэлектроника. 38. 364 (2009)].
5. B.S. Bokstein, Ch.V. Kopetskii, P.S. Shvindlerman. Thermodynamics and kinetics of grain boundaries in metals. Moscow. Mtallurgy (1986). 222 p. (in Russian).
6. R.V. Goldstein, T.M. Makhviladze, M.E. Sarychev. Surface. N 8. 5 (2011) [Р.В. Гольдштейн, Т.М. Махвиладзе, М.Е. Сарычев. Поверхность. N 8. 5 (2011)].
7. Yu.M. Petrov. Clusters and small particles. Moscow. Nauka (1986). 367 p. (in Russian) [Ю.М. Петров. Кластеры и малые частицы. Москва. Наука. 1986. 367 с.].
8. R.V. Goldstein, T.M. Makhviladze, M.E. Sarychev. Preprint IPM RAS. № 1106 (2015). 11 р. (in Russian).
9. Handbook of Physical Quantities, ed. by Grigoriev I.S. and Meilikhov E.Z., Moscow. Energoatomizdat (1991) (in Russian).
10. K.N. Tu. J. Appl. Phys. 94. 5452-5473 (2003).
11. V.M. Chebatin. Physical chemistry of solids. Moscow. Khimia. (1982). 320 p. (in Russian) [В.М. Чебатин. Физическая химия твердых тел. Москва. Химия. 1982. 320 с.].

Cited by (3)

1.
P. V. Zakharov, M. D. Starostenkov, S. V. Dmitriev. Bull. Russ. Acad. Sci. Phys. 81(11), 1322 (2017). Crossref
2.
G. Shuvalov, S. Kostyrko. Continuum Mech. Thermodyn. 33(5), 2095 (2021). Crossref
3.
G. Shuvalov, S. Kostyrko, H. Altenbach. Continuum Mech. Thermodyn. 36(3), 503 (2024). Crossref

Similar papers