Comparative study of saturating power boriding media of different composition

I.A. Garmaeva1, A.M. Guriev1,2, T.G. Ivanova1, M.A. Guriev1, S.G. Ivanov1
1Altai State Technical University after I.I. Polzunov, prospect Lenin 46, 656038 Barnaul
2Wuhan Textile University, 1 FangZhi Road, China 430073 Wuhan
Abstract
Comparison of the ability of saturating media for Boriding based on boron carbide and amorphous boron and mixtures for simultaneous saturation of boron, chromium and titanium. As the object of study were selected boride coatings on carbon steels: 45 and U8A. Borating made from powder mixtures in a chamber furnace. The Microstructure and the thickness of the diffusion coatings was investigated on cross microsections by optical microscopy. Identification boride phases produced by the "color etching" and with the help of X-ray diffraction. It is shown that while saturation with boron, chromium and titanium carbon steel, diffusion processes are much more intense. Introduction inside the boriding mixture carbide-forming elements such as chromium and titanium, facilitates significant acceleration of diffusion of boron within steels 45 and U8A. With simultaneous multicomponent saturation with boron, titanium and chromium the rate of formation of the diffusion layer on the carbon steels higher than under one-component boriding. In the case of multicomponent saturation boron together with the strong carbide-forming elements (chromium and titanium) increase the carbon content of the saturated carbon steel of 0.45 to 0.8 wt.% has little effect on the formation of a diffusion layer in contrast to the one-component boron saturation. In case of the one-component boriding carbon steels, content the carbon of the steel is significantly affects both the thickness and of microstructure of the boride coating. With simultaneous saturation the carbon steels of boron, titanium and chromium carbon content of the steel is practically no effect on the diffusion coating thickness.
Received: 07 September 2016   Accepted: 21 October 2016
Views: 61   Downloads: 31
References
1.
Voroshnin L. G. Borirovanie promishlennikh stalej i chugunov. Textbook. Spravochnoe posobie. Minsk, Belarus. (1981) 205p. (in Russian) [Ворошнин Л. Г. Борирование промышленных сталей и чугунов. Справочное пособие. Минск, Беларусь. 1981. 205с.]
2.
Mosorov V. I., Greshilov A. D., Ligdenov B. D., Polzunovskij vestnik. 1 (1) 206 (2012) (in Russian) [Мосоров В. И., Грешилов А. Д., Лыгденов Б. Д. Ползуновский вестник. 1 (1) 206 (2012).]
3.
Patent RF 2011148197 / 02, 25.11.2011 (in Russian) [Патент РФ 2011148197 / 02, 25.11.2011]
4.
Kazakov A. A., Kiselev D. Metallography, Microstructure, and Analysis. DOI 10.1007 / s13632‑016‑0289‑6
5.
Kazakov A. A., Ryaboshuk S., Lyubochko D., Chigintsev L. Microscopy and Microanalysis. 3 (21) 1775 (2015). DOI:10.1017 / S1431927615009551
6.
Kazakov A. A. and Kiselev D. Microscopy and Microanalysis. 3 (21) 457 (2015). DOI 10.1017 / S1431927615003086.
7.
Kazakov A. A., Luong N. H., Kasakova E. I., Zorina E. M. Proceedings of the 32nd Annual Convention of the International Metallographic Society Held “Understanding Processing, Structure, Property and Behavior Correlations”. Cincinati, Ohio ASM International. (1999) p. 133 – 142.
8.
Kazakov A. A., Kovalev P. V., Myasnikov A. L., Drobinin A. A., Zinchenko S. D. Chernyie metally. 2 32 (2006) (in Russian). [Казаков А. А., Ковалев П. В., Мясников А. Л., Дробинин А. А., Зинченко С. Д. Черные металлы. 2 32 (2006).]
9.
Syarifah Yunus, Siti Khadijah Alias, Freddawati Rashiddy Wong, Amirul Abd. Rashid and Nik Rosli Abdullah. Journal of Engineering and Applied Sciences. 10 17 (2015).
10.
Ivanov S. G., Garmaeva I. A., Guriev M. A., Guriev A. M., Starostenkov M. D. Lecture Notes in Mechanical Engineering. 49 22 (2015). DOI: 10.1007 / 978‑3‑319‑15684‑2_7
11.
Ivanov S. G., Guriev A. M., Starostenkov M. D., Ivanova T. G., Levchenko A. A. Russian Physics Journal. 2 (57) 266 (2014). DOI:10.1007 / s11182‑014‑0234‑6
12.
Yu, L. G., Chen, X. J., Khor, K. A., & Sundararajan, G.. Acta Materialia. 8 (53) 2361 (2005).
13.
Zuno-Silva J., Ortiz-Domínguez M., Keddam M., Elias-Espinosa M., Damián-Mejía O., Cardoso-Legorreta E., Abreu-Quijano M. J. Min. Metall. Sect. B-Metall. 2 (50) 101 (2014).
14.
Calik A., Gencer Y., Tarakci M., Gunduz K. O. and Gulec A. E. Acta physica polonica a. 2 (123) 449 (2013). DOI: 10.12693 / APhysPolA.123.449.
15.
Gunes I., Kayali Yu. and Ulu S. Indian Journal of Engineering & Material Sciences. 19 397 (2012).
16.
Campos-Silva I. JESTECH. 2 (15) 53 (2012).
17.
Milinović A., Krumes D., Marković R. Technical Gazette. 1 (19) 27 (2012).
18.
KENDALL RALPH S., UNITED STATES PATENTS 3,806,374 Patented Apr. 23, 1974.
19.
Sutrisno, Soegijono B. and Hikam M. Research Journal of Material Sciences. 1 (10) 1 (2013)
20.
Ibrahim Gunes, Melih Ozcatal. Materials and technology. 5 (49) 759 (2015).
21.
Guriev A. M., Kozlov E. V., Lygdenov B. D., Kirienko A. M., Chernyh E. V. Fundamental’nye problemy sovremennogo materialovedenija. 1 (2) 54 (2004). (in English) [Guriev A. M., Kozlov E. V., Lygdenov B. D., Kirienko A. M., Chernykh E. V. Фундаментальные проблемы современного материаловедения. 1 (2) 54 (2004).]
Cited by
1.
Гурьев А.М., Власова О.А., Иванов С.Г., Гармаева И.А., Мэй Ш., Лю Ч., Sciences of Europe, 82-88 (2017).
2.
Иванов С.Г., Гурьев А.М., Саарбрюккен, 2017. (2017).