Plasma surface carburizing with graphite paste

A.E. Balanovskii, V. Vu show affiliations and emails
Received 03 April 2017; Accepted 11 May 2017;
This paper is written in Russian
Citation: A.E. Balanovskii, V. Vu. Plasma surface carburizing with graphite paste. Lett. Mater., 2017, 7(2) 175-179


This paper is considered a new technology of plasma surface carburization using graphite pastes made from liquid glass and graphite. The use of this type of coating together with a new composition of the plasma-forming gas (a mixture of argon and carbon dioxide) makes it possible to saturate the metal surface with carbon without surface melting. It is established that during the time of plasma action 0.1-1с the surface layer is saturated to the level of white iron concentration. The main parameters of the cemented layer are determined: the depth of the cemented layer is 35-250 μm with microhardness of up to 12000 MPa. Depending on the composition of the coating and the cooling rate, γ → α - the conversion may result in the formation of a wide range of structural components. The morphological composition obtained in the process of plasma surface carburization is very diverse and specific, which is due to the distribution of carbon in the volume of material in the plasma treatment zone, the speed parameters of heating and cooling, and the composition of the graphite coating. Each phase and structure in the hardened layer (retained austenite, cementite, martensite, ledeburite) has its own varieties. The cemented layer consists of two zones, the first zone with significant carbon supersaturation (white iron structure) is formed due to frontal diffusion of carbon (ledeburite,retained austenite, martensite). And the second zone is formed due to intensive or reactive diffusion, in this zone the carbon concentration gradually approaches the initial one.

References (11)

1. A. E. Balanovskii. Strengthening Technologies and Coatings. 1 (133), 25 - 34 (2016) (in Russian) [Балановский А. Е.. Упрочняющие технологии и покрытия. 1 (133), 25 - 34 (2016)].
2. A. E. Balanovskii. Plasma surface hardening of metals. Irkutsk, Publishing House of IrSTU (2006) p 180. (in Russian). [А. Е. Балановский. Плазменное поверхностное упрочнение металлов, Иркутск: Изд-во ИрГТУ. 2006. 180 с.].
3. A. A. Skripkin, V. A. Netsvetaev, V. E Shcherbakov, N. Yu. Minenko. Welding International. 11, 15 - 17 (1992) (in Russian) [Скрипкин А. А., Нецветаев В. А., Щербаков В. Е., Миненко Н. Ю. Сварочное производство. 11, 15 - 17 (1992)].
4. Vu Van Huy., A. E. Balanovskii. Innovations in Science. 51 - 1, 95 - 102 (2015) (in Russian) [Ву Ван Гюи., Балановский А. Е. Инновации в науке. 11, 15 - 17 (2015)].
5. A. N. Minkevich.Chemical-thermal treatment of metals and alloys, Moscow, Mechanical engineering (1965) 492p. (in Russian) [А. Н. Минкевич Химико-термическая обработка металлов и сплавов. М., Машиностроение, 1965. 492 с.].
6. A. E. Balanovskii, Vu Van Huy. Strengthening Technologies and Coatings. 146 (2), 82 - 91 (2017) (in Russian) [Балановский А. Е., Ву Ван Гюи. Упрочняющие технологии и покрытия. 146 (2), 82-91(2017)].
7. Y. Sun. Journal of Materials Processing Technology. 168, 189 - 194 (2005).
8. CJ Scheuer, RP Cardoso, FI Zanetti, T Amaral, SF Brunatto. Surface and Coatings Technology 206 (24), 5085 - 5090 (2006).
9. N. R. Gal, E. V Rutkov, A. Ya Tontegode. Technical Physics. 72 (4), 113 - 119 (2002) (in Russian) [Галь Н. Р., Рутьков Е. В., Тонтегоде А. Я. Диффузия углерода между объёмом и поверхностью (100) молибдена // ЖТФ.72 (4), 113 - 119 (2002)].
10. Vu Van Huy, A. E. Balanovskii, . Vestnik IrGTU. 21 (3), 10 - 22 (2017) (in Russian) [Ву Ван Гюи, Балановский А. Е., . Вестник ИрГТУ. 21 (3), 10 - 22 (2017)].
11. Vu Van Huy, A. E. Balanovskii, . Vestnik IrGTU. 21 (4), 10 - 21 (2017) (in Russian) [Ву Ван Гюи, Балановский А. Е., . Вестник ИрГТУ. 21 (4), 10 - 21 (2017)].

Similar papers