Structure and electrical potential of calcium phosphate coatings modified with aluminum oxyhydroxide nanoparticles

V.V. Chebodaeva ORCID logo , M.B. Sedelnikova, A.D. Kashin, O.V. Bakina, I.A. Khlusov ORCID logo , A.L. Zharin, V.S. Egorkin, I.E. Vyaliy, Y.P. Sharkeev show affiliations and emails
Received 17 July 2022; Accepted 16 October 2022;
Citation: V.V. Chebodaeva, M.B. Sedelnikova, A.D. Kashin, O.V. Bakina, I.A. Khlusov, A.L. Zharin, V.S. Egorkin, I.E. Vyaliy, Y.P. Sharkeev. Structure and electrical potential of calcium phosphate coatings modified with aluminum oxyhydroxide nanoparticles. Lett. Mater., 2022, 12(4) 336-342
BibTex   https://doi.org/10.22226/2410-3535-2022-4-336-342

Abstract

Studies of the effect of the introduction of charged aluminum oxyhydroxide (AO) nanoparticles into calcium phosphate porous coatings formed by micro-arc oxidation on their electrical potential and structure are presented.  An increase in the duration of ultrasonic dispersion of initial AlN powder suspension from 10 to 60 min and an increase in the surface roughness of the coatings, parameter Ra, from 3.5 to 5.5 µm led to an increase in the surface electrical potential from −85 to −35 mV.The effect of the introduction of charged aluminum oxyhydroxide (AO) nanoparticles into the porous coatings from calcium phosphate formed by micro-arc oxidation on their electrical potential and structure was studied. The modification resulted in changes in the morphology and elemental composition of the coatings. The selection of coating functionalization parameters resulted in obtaining homogeneously distributed aluminum oxyhydroxide nanoparticles in the form of agglomerates, providing the maximum change in the electrical potential of the coatings. An increase in the duration of ultrasonic dispersion (USD) of initial AlN powder suspension from 10 to 60 min and an increase in the surface roughness of the coatings, parameter Ra, from 3.5 to 5.5 µm led to an increase in the surface electrical potential from −85 to −35 mV. At the same time, the aluminum content in the coating decreased from 3 to 1 at.% with an increase in the duration of USD of the AlN powder suspension from 10 to 60 minutes. The introduction of aluminum oxyhydroxide nanoparticles into the coating contributed to an improvement in corrosion properties, namely, an increase in the corrosion potential from 0.1 to 0.2 mV and a decrease in the corrosion current from 2.5 ∙10−9 to 1.1·10−9 A ∙ cm2.

References (35)

1. N. E. Putra, M. J. Mirzaali, I. Apachitei, J. Zhou, A. A. Zadpoor. Acta Biomater. 109, 1 (2020). Crossref
2. A. Revathi, A. D. Borrás, A. I. Muñoz, C. Richard, G. Manivasagam. Mater. Sci. Eng. 76, 1354 (2017). Crossref
3. L. Li, M. Zhang, Y. Li, J. Zhao, L. Qin, Y. Lai. Biomater. 4 (2), 129 (2017). Crossref
4. B. Sharma, K. Nagano, M. Kawabata, K. Ameyama. Lett. Mater. 9 (4s), 511 (2019). Crossref
5. A. V. Lyasnikova, O. A. Dudareva, I. P. Grishina, O. A. Markelova, V. N. Lyasnikov. Lett. Mater. 8 (2), 202 (2018). (in Russian) [А. В. Лясникова, О. А. Дударева, И. П. Гришина, О. А. Маркелова, В. Н. Лясников. Письма о материалах. 8 (2), 202 (2018).]. Crossref
6. A. P. Rubshtein, A. B. Vladimirov, S. A. Plotnikov, V. B. Vykhodets, T. E. Kurennykh. Lett. Mater. 12 (2), 121 (2022). Crossref
7. V. V. Chebodaeva, M. B. Sedelnikova, O. V. Bakina, A. A. Miller, M. A. Khimich, K. S. Golohvast, A. M. Zaharenko, Yu. P. Sharkeev. Surf. Interfaces. 31, 101996 (2022). Crossref
8. B. Mingo, Y. Guo, A. Nemcova, A. Gholinia, M. Mohedano, M. Sun, A. Matthews, A. Yerokhin. Electrochim. Acta. 299, 772 (2019). Crossref
9. A. S. Gnedenkov, S. V. Lamaka, S. L. Sinebryukhov, D. V. Mashtalyar et al. Corros. Sci. 182, 109254 (2021). Crossref
10. M. Sun, A. Yerokhin, M. Ya. Bychkova, D. V. Shtansky, E. A. Levashov, A. Matthews. Corros. Sci. 111, 753 (2016). Crossref
11. A. S. Gnedenkov, S. L. Sinebryukhov, V. S. Filonina, N. G. Plekhova, S. V. Gnedenkov. J. Magnes. Alloy. In Press. Crossref
12. G. Barati Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade. J. Magnes. Alloys. 5, 74 (2017). Crossref
13. M. B. Sedelnikova, E. Komarova, Y. Sharkeev, T. Tolkacheva, V. Sheikin, V. Egorkin, et al. Metals. 8, 238 (2018). Crossref
14. Y. Dekhtyar, M. V. Dvornichenko, A. V. Karlov et al. IFMBE Proc. 25, 245 (2009). Crossref
15. S. A. M. Tofail, J. Bauer. Adv. Mater. 28 (27), 5470 (2016). Crossref
16. I. S. Harding, N. Rashid, K. A. Hing. Biomaterials. 26, 6818 (2005). Crossref
17. B. Gottenbos, H. C. van der Mei, F. Klatter et al. Biomaterials. 24, 2707 (2003). Crossref
18. E. G. Komarova, E. A. Kazantseva, V. S. Ripenko, A. L. Zharin, Y. P. Sharkeev. J. Phys. Conf. Ser. 2064, 012077 (2021). Crossref
19. S. Metwally, U. Stachewicz. Mater. Sci. Eng. C. 104, 109883 (2019). Crossref
20. A. S. Lozhkomoev, E. A. Glazkova, O. V. Bakina, M. I. Lerner, I. Gotman, E. Y. Gutmanas, S. O. Kazantsev, S. G. Psakhie. Nanotechnology. 27, 205603 (2016). Crossref
21. A. S. Lozhkomoev, G. Mikhaylov, V. Turk, B. Turk, O. Vasiljeva. In: Springer Tracts Mech. Eng. Springer, Cham (2020) p. 211. Crossref
22. S. S. Timofeev, A. S. Lozhkomoev, S. O. Kazantsev, I. N. Tikhonova, M. I. Lerner. Russ. J. Phys. Chem. A. 95, 1043 (2021). Crossref
23. M.V. Chaikina, N.V. Bulina, O.B. Vinokurova, I.Yu. Prosanov, D.V. Dudina. Ceram. 45, 16927 (2019).
24. A. L. Zharin. In: Nanosci. Technol. (Ed. by B. Bhushan). Heidelberg, Springer-Verlag (2010) p. 687. Crossref
25. K. U. Pantsialeyeu, A. U. Krautsevich, I. A. Rovba, V. I. Lysenko, R. I. Vorobey, O. K. Gusev, A. L. Zharin. Dev. and Meth. of Meas. 8 (4), 386 (2017). Crossref
26. C. Ma, A. Nagai, Y. Yamazaki, T. Toyama, Y. Tsutsumi, T. Hanawa, W. Wang, K. Yamashita. Acta Biomater. 8, 860 (2012). Crossref
27. D. Zhao, Y. Lu, Z. Wang, X. Zeng, S. Liu, T. Wang. Int. J. Refract. Hard. Met. 54, 417 (2016). Crossref
28. F. Jahanmard, F. M. Dijkmans, A. Majed, H. C. Vogely et al. ACS Biomater. Sci. Eng. 6 (10), 5486 (2020). Crossref
29. S. Liu, J. Zeng. Surf. Coat. Technol. 352, 15 (2018). Crossref
30. W. Yang, B. Jiang, A. Wang, H. Shi. J. Mater. Sci. Technol. 28 (8), 707 (2012). Crossref
31. Yu. P. Sharkeev, K. S. Popova, K. A. Prosolov, E. Freimanis, Yu. Dekhtyar, I. A. Khlusov. J. Surf. Invest. X. Ray. 2, 95 (2020). Crossref
32. ASTM G59-97, Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM International, West Conshohocken, PA (2014).
33. A. G5-94, Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements, ASTM International, West Conshohocken, PA (2004).
34. Z. Shi, A. Atrens. Corros. Sci. 53, 226 (2011). Crossref
35. F. Cao, Z. Shi, J. Hofstetter, P. J. Uggowitzer, G. Song, M. Liu, A. Atrens. Corros. Sci. 75, 78 (2013). Crossref

Similar papers

Funding

1. Siberian State Medical University - Development program Priority 2030.
2. Government research assignment for ISPMS SB RAS - project FWRW-2021-0007