Anisotropy of impact toughness of Ti-6Al-4V alloy joints processed by linear friction welding

R.M. Kashaev, M.I. Nagimov show affiliations and emails
Received 02 December 2021; Accepted 07 December 2021;
Citation: R.M. Kashaev, M.I. Nagimov. Anisotropy of impact toughness of Ti-6Al-4V alloy joints processed by linear friction welding. Lett. Mater., 2021, 11(4s) 557-560
BibTex   https://doi.org/10.22226/2410-3535-2021-4-557-560

Abstract

The force change depending on the deflection during DWTT 
Curve No. 2 - the notch is perpendicular to the direction of vibration (WD); Curve No. 3 - the notch is parallel to the direction of vibration (WD).
A characteristic feature of the deformation diagrams for specimens with the parallel notch is the presence of two local maxima. This contrasts with the force change curve for the perpendicular notch specimens.Drop weight tear tests (DWTTs) of joints of Ti-6Al-4V alloy obtained by linear friction welding (LFW) were carried out. The specimens had a square cross-section with a U-shaped notch, which was set parallel (parallel notch) or perpendicular (perpendicular notch) to the direction of frictions during LFW (welding direction (WD)). The impact toughness and the fracture morphology were assessed. The specimens with the parallel notch have a 15 % higher impact toughness than the ones with perpendicular notch. The widths of the side slopes of the fracture surfaces in specimens with the parallel notch were significantly larger greater than those in specimens with the perpendicular notch. A characteristic feature of the deformation diagrams for specimens with the parallel notch is the presence of two local maxima. This contrasts with the force change curve for the perpendicular notch specimens. The different types of fractures, the nature of the force change during DWTT, as well as the different impact toughness values of titanium alloy Ti-6Al-4V specimens obtained by the LFW method can be explained by the effect of textural hardening due to the formation of a sharp crystallographic texture of the α-phase in the weld. For the perpendicular notch specimens, the basal-plane texture strengthens the lateral surfaces. The latter leads to a decrease in local narrowing and plastic deformation of the overal bending. For the specimens with the parallel notch, the prismatic-type texture favors plastic deformation of the areas near the lateral surfaces. The basal-type texture in the notch center hinders plastic deformation.

References (20)

1. W. Zhou, K. G. Chew. Mater. Sci. Eng. A. 347, 180 (2003). Crossref
2. V. Yu. Zubarev, B. A. Kolomenski, A. B. Kolomenski. Svarochnoe proizvodstvo. 4, 9 (2010). (in Russian) [В. Ю. Зубарев, Б. А. Коломенский, А. Б. Коломенский. Сварочное производство. 4, 9 (2010).].
3. M. Balasubramanian, V. Jayabalan, V. Balasubramanian. Materials Letters. 62, 1102 (2008). Crossref
4. T. Mohandas, D. Banerjee, V. V. Kutumba Rao. Mater. Sci. Eng. A. 254, 147 (1998). Crossref
5. S. Cui, Y. Shi, C. Zhang. Trans. Nonferrous Met. Soc. China. 31 (2), 416 (2021). Crossref
6. F. Gao, Y. Cui, Y. Lv, W. Yu, P. Jiang. Mater. Sci. Eng. A. 827, 142024 (2021). Crossref
7. Y. Fu, N. Guo, B. Zhu, X. Shi, J. Feng. Journal of Materials ProcessingTech. 275 (1-2), 116372 (2020). Crossref
8. C. Fu, Y. Wang, S. He, C. Zhang, X. Jing. Mater. Sci. Eng. A. 821, 141604 (2021). Crossref
9. T. J. Ma, W.-Y. Li, S. Y. Yang. Materials and Design. 30, 2128 (2009). Crossref
10. A. Yu. Medvedev, V. M. Bychkov, E. E. Tarasenko, M. P. Savichev, A. V. Supov. Vestnik UGATU. 8, 94 (2012). (in Russian) [А. Ю. Медведев, В. М. Бычков, Е. Е. Тарасенко, М. П. Савичев, А. В. Супов. Вестник УГАТУ. 8, 94 (2012).].
11. Y. Su, W. Li, X. Wang, T. Ma, X. Yang. Achilles Vairis. Journal of Manufacturing Processes. 36, 255 (2018). Crossref
12. P. Zhao, C. Wei, Y. Li, J. Tao, C. Zhang, X. Xiao, M. Zhang. Materials Science & Engineering A. 803, 140496 (2021). Crossref
13. H. Wilhelm, R. Furlan, K. C. Moloney. Ti-1995 8th World Conf. on Titanium Science and Technology. Birmingham, UK (1995) p. 620.
14. A. Vairis, M. Frost. Wear. 217, 117 (1998). Crossref
15. R. M. Kashaev, A. M. Husnullin, V. V. Nikolaev. Metal Week in Moscow 2008. Materials of Conferences. (2009) p. 121. (in Russian) [Р. М. Кашаев, А. М. Хуснуллин, И. И. Николаев. Неделя металлов в Москве 2008. Материалы конференции. (2009) c. 121.].
16. A. M. Husnullin, R. M. Kashaev. Letters on materials. 6 (3), 227 (2016). (in Russian) [А. М. Хуснуллин, Р. М. Кашаев. Письма о материалах. 6 (3), 227 (2016).]. Crossref
17. Y. Guo, Y. Chiu, H. Li, M. M. Attallah, S. Bray, P. Bowen. Ti-2011 Proceedings of the 12th World Conf. on Titanium.Beijing, China (2011) p. 1995.
18. M. Karadge, et al. Mater. Sci. Eng. A. 459, 182 (2007). Crossref
19. Ya. B. Fridman. Mehanicheskie svoistva metallov. Moskow, Mashinostroenie (1974) 368p. (in Russian) [Я. Б. Фридман. Механические свойства металлов. Москва, Машиностроение (1974) 368 с.].
20. A. Hasegawa, T. Nishimura, S. Ohtani. Titanium Science and Technology, vol. 2. PlenumPress, New York (1973) 1349 p.

Similar papers

Funding

1. Institute for Metals Superplasticity Problems, Russian Academy of Sciences - 0060-2019-0002