Elastic anysotropy of dentin and enamel

S.A. Muslov, D.S. Lisovenko
Received: 08 May 2018; Revised: 11 July 2018; Accepted: 19 July 2018
This paper is written in Russian
Citation: S.A. Muslov, D.S. Lisovenko. Elastic anysotropy of dentin and enamel. Letters on Materials, 2018, 8(3) 288-293
BibTex   DOI: 10.22226/2410-3535-2018-3-288-293

Abstract

Variability of Poisson's ratios for dentin and enamel.The anisotropy of the elastic properties of hard tooth tissues, dentine and enamel is investigated. Dentin and enamel are considered as anisotropic hexagonal symmetry media. The variability of Poisson’s ratio for dentin and enamel are obtained is analyzed. The parameters of elastic anisotropy are calculated. These parameters exceed the characteristic boundary values inherent in isotropic materials, including the known composite materials, used in dentistry for restoration. It is assumed that this can lead to the formation of domains of overstress at the border of the filling material-dentin and the filling material-enamel, to accompany the growth of microcracks, to weaken the adhesion of the material to dentin and enamel, to destroy the results of restoration by composite materials. Elastic anisotropy of hexagonal crystals was determined in several parameters, since on the basis of literature data it was assumed that there is no such anisotropy index of the deformation of hexagonal crystals, which could be considered the main one. Orientational dependencies of the elastic moduli are given. The possibility of predicting the "technical" elastic characteristics of microinhomogeneous materials – composites, such as hard tissues of the tooth and bones of the skeleton, is estimated on the basis of measurement and calculation of the elastic parameters of their individual components. It is represented that the obtained data will promote to the best understanding of communications between structure and elastic properties of tissues and optimization of the decision of problems of biomechanics of a tooth taking into account symmetry of their mechanical properties.

References (20)

1.
J. L. Katz, K. Ukraincik. J. Biomech. 4, 221 (1971). DOI: 10.1016/0021-9290(71)90007-8
2.
J. L. Katz. J. Biomech. 4, 455 (1971). DOI: 10.1016/0021-9290(71)90064-9
3.
I. Yu. Lebedenko, S. D. Arutyunov, S. A. Muslov, A. S. Useynov. Cathedra. 32, 24 (2010). (in Russian)[И. Ю. Лебеденко, С. Д. Арутюнов, С. А. Муслов, А. С. Усеинов. Кафедра. 32, 24 (2010).]
4.
I. Yu. Lebedenko, S. D. Arutyunov, S. A. Muslov, A. S. Useynov. Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Meditsina. 4, 637 (2009). (in Russian) [И. Ю. Лебеденко, С. Д. Арутюнов, С. А. Муслов, А. С. Усеинов. Вестник РУДН, серия Медицина. 4, 637 (2009).]
5.
J. F. Nye. Physical Properties of Crystals. Clarendon Press, Oxford (1957) 329 p.
6.
Yu. I. Sirotin, M. P. Shaskolskaya. Fundamentals of Crystal Physics. Mir, Moscow (1982) 640 p. (in Russian) [Ю. И. Сиротин, М. П. Шаскольская. Основы кристаллофизики. Москва, Наука (1979) 640 с.]
7.
L. D. Landau, E. M. Lifshitz. Theory of Elasticity. Vol. 7. Course of Theoretical Physics. Butterworth-Heinemann (1986) 195 p.
8.
T.‑C. Lim. Auxetic Materials and Structures. Springer Singapore (2015) 588 p. DOI: 10.1007/978‑981‑287‑275‑3
9.
R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko, M. A. Volkov. Phys. Mesomech. 17, 97 (2014). DOI: 10.1134/S1029959914020027
10.
H. M. A. Kolken, A. A. Zadpoor. RSC Adv. 7(9), 5111 (2017). DOI: 10.1039/C6RA27333E
11.
R. V. Goldstein, D. S. Lisovenko, A. V. Chentsov, S. Yu. Lavrentyev. Letters on materials. 7(4), 355 (2017). DOI: 10.22226/2410‑3535‑2017‑4‑355‑358
12.
M. Bilski, K. W. Wojciechowski. Phys. Status Solidi B. 253(7), 1318 (2016). DOI: 10.1002/pssb.201600140
13.
R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko, M. A. Volkov. Letters on materials. 6(2), 93 (2016). DOI: 10.22226/2410‑3535‑2016‑2‑93‑97
14.
S. S. Pertsov, G. M. Styureva, S. A. Muslov, A. A. Sinitsyn, A. A. Korneev, N. V. Zaitseva. Fundamentals of bio-mechanics for dentists. Moscow, MGMSU (2016) 109 p. (in Russian) [С. С. Перцов, Г. М. Стюрева, С. А. Муслов, А. А. Синицын, А. А. Корнеев, Н. В. Зайцева. Основы биомеханики для стоматологов. Москва, МГМСУ (2017) 109 с.]
15.
S. Lees, F. Rollins. J. Biomech. 5, 557 (1972). DOI: 10.1016/0021-9290(72)90027-9
16.
R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko. Dokl. Phys. 56(12), 602 (2011). DOI: 10.1134/S1028335811120019
17.
R. V. Goldstein, V. A. Gorodtsov, M. A. Komarova, D. S. Lisovenko. Scripta Mater. 140, 55 (2017). DOI: 10.1016/j.scriptamat.2017.07.002
18.
T. D. Shermergor. The theory of elasticity of microinhomogeneous media. Moscow, Nauka (1977) 400 p. [Т. Д. Шермергор. Теория упругости микронеоднородных сред. Москва, Наука (1977) 400 с.]
19.
E. P. Bogdanov, I. A. Skoda. Relative parameters of elastic anisotropy for crystals with bcc and hcp lattice: Proceedings of "Progressive technologies in training and production". KTI VolgGTU (2006) P. 49 – 51. (in Russian) [Е. П. Богданов, И. А. Шкода. Относительные параметры упругой анизотропии для кристаллов с ОЦК и ГПУ решёткой: Материалы IV Всероссийской конференции "Прогрессивные технологии в обучении и производстве". КТИ ВолгГТУ (2006) С. 49 – 51.]
20.
T. P. Chernyaeva, V. M. Gritsina, E. A. Mikhailov, A. V. Ostapov. Voprosy atomnoy nauki i tekhniki. Series: Phys. Rad. Povr. Rad. Material. 4 – 2, 206 (2009). (in Russian) [Т. П. Черняева, В. М. Грицина, Е. А. Михайлов, А. В. Остапов. Вопросы атомной науки и техники. Серия: Физ. Рад. Повр. Рад. Материал. 4 – 2, 206 (2009).]