Lateral strain ratios for cubic ionic crystals

V.N. Belomestnykh, E.G. Soboleva show affiliations and emails
Received 02 June 2011; Accepted 21 June 2011;
This paper is written in Russian
Citation: V.N. Belomestnykh, E.G. Soboleva. Lateral strain ratios for cubic ionic crystals. Lett. Mater., 2011, 1(2) 84-87
BibTex   https://doi.org/10.22226/2410-3535-2011-2-84-87

Abstract

In the present work, using the known experimental data on the stiffness constants, cij, of cubic ionic singlecrystals with different types of crystal lattice (В1, В2, В3, NaClO3), we define anisotropic and isotropic (for polycrystals) Poisson’s ratios for polycrystals of halogenides, halogenates, cyanides of alkali metals and halogenides of copper, silver, thallium and ammonium. It has been established that at room temperature and atmospheric pressure LiF and copper halogenides have negative Poisson’s. At the same time, the Poisson’s <110> ratios in direction ratio is anomalously positive in the cyanides of alkali metals. Temperature (LiF, NaCN) and pressure (CuCl) dependences of Poisson’s ratios were studied.

References (16)

1. D. A. Konek, K. W. Wojciechowski, Y. M. Pleskachevsky, S. V. Shilko. Mechanics of composite materials andconstructions. 10, 35 (2004) (in Russian).
2. S. V. Dmitriev , A. A. Vasiliev, N. Yoshikawa, T. Shigenari, Y. Ishibashi. Phys. stat. sol. b. 242, 528 (2005).
3. I. N. Svetlov, A. I. Epishin, A. I. Krivko and other. DANUSSR. 302, 1372 (1988) (in Russian).
4. R. H. Baughman, J. M. Shacklette, A. A. Zakhidov, S.Stafstrom. Nature. 392, 362 (1998).
5. I. N. Franzevich, F. F. Voronov, S. A. Bakuta. Constantsand modules of elasticity of metals and non-metals, Kiev, Naukova Dumka (1982) 286 p. (in Russian).
6. V. N. Belomestnikh, Yu. P. Poholkov, V. L. Ulyanov, O. L.Khasanov. Elastic and acoustic properties of ion ceramicdielectrics and high-temperature superconductors, Tomsk, STT (2001) 226 p. (in Russian).
7. S. Haussühl, J. Eckstein, K. Recker, F. Wallrafen. Acta.Cryst. A 33, 847 (1977).
8. R. K. Satija, C. H. Wang. J. Chem. Phys. 66, 2221 (1977).
9. S. Haussühl. Solid State Communic. 13, 147 (1973).
10. A. Loidl, S. Haussühl, J. K. Kjems. Z. Phys. B 50, 187(1983).
11. N. K. Gaur, P. Singh, E. G. Rini, J. Galgale, R. K. Singh.Pramana J. Phys. 63, 419 (2004).
12. R. C. Hanson, J. R. Hallberg, C. Schwab. Appl. Phys. Lett.21, 490 (1972).
13. R. K. Singh, D. C. Gupta. Phys. Rev. B. 40, 11278. (1989).
14. L. D. Landau, E. M. Lifshitz. The theory of elasticity, Moscow, Nauka (1987) 248 p. (in Russian).
15. S. B. S. Sastry, R. B. Тripati, C. Ramasastry. J. Nonmetals. 1, 93 (1972).
16. D. Sahu, S. D. Mahanti. Phys. Rev. B. 26, 2981 (1982).

Cited by (3)

1.
V.N. Belomestnykh, E.G. Soboleva. AMM. 682, 170 (2014). Crossref
2.
M. D. Raransky, V. N. Balazyuk, M. M. Gunko. Metallofiz. Noveishie Tekhnol. 37(3), 379 (2016). Crossref
3.
A.V. Porubov, A.E. Osokina. Wave Motion. 89, 185 (2019). Crossref

Similar papers