Elastic properties of diamane

P.V. Polyakova, L.K. Galiakhmetova ORCID logo , R.T. Murzaev, D.S. Lisovenko, J.A. Baimova show affiliations and emails
Received 24 January 2023; Accepted 22 May 2023;
Citation: P.V. Polyakova, L.K. Galiakhmetova, R.T. Murzaev, D.S. Lisovenko, J.A. Baimova. Elastic properties of diamane. Lett. Mater., 2023, 13(2) 171-176
BibTex   https://doi.org/10.22226/2410-3535-2023-2-171-176

Abstract

New two-dimensional structure - diamane have been studied by molecular dynamics simulation. The stiffness constants are calculated from molecular dynamics and then applied to analize Young's modulus, shear modulus, and Poisson's ratio.Diamane is a two-dimensional carbon-based structure coated with hydrogen atoms. The stiffness constants of diamane are studied by molecular dynamics simulation. These constants are used for an analytical calculation of Young’s modulus, Poisson’s ratio, and shear modulus. Two different morphologies are considered, namely, AA diamane and AB diamane. Moreover, both morphologies can contain hydrogen or be without it. It is found that pristine diamane without hydrogen demonstrates higher stiffness constants due to the changes in hybridization. At the same time, the difference in the values of the constants for the two diamane morphologies AA and AB is insignificant. All the obtained results are compared with elastic constants of graphene and diamond calculated by the same method and obtained from literature. Young’s modulus of pristine diamane equal to 1182 GPa is close to that of for graphene diamond.

References (53)

1. R. Dong, T. Zhang, X. Feng. Chem. Rev. 118 (13), 6189 (2018). Crossref
2. M. Xu, T. Liang, M. Shi, H. Chen. Chem. Rev. 113 (5), 3766 (2013). Crossref
3. A. K. Geim, K. S. Novoselov. Nat. Mater. 6 (3), 183 (2007). Crossref
4. G. Gupta, M. Zeng, A. Nurbawono, W. Huang, G. Liang. In: Graphene Science Handbook (ed. by M. Aliofkhazraei, N. Ali, W. I. Milne, S. Ozkan, S. Mitura, J. L. Gervasoni). Boca Raton, CRC Press (2016) pp. 209 - 226. Crossref
5. K. Nath, S. K. Ghosh, N. C. Das. In: Polymer Nanocomposites Containing Graphene (ed. by M. Rahaman, L. Nayak, I. A. Hussein, N. C. Das). Elsevier (2022) pp. 343 - 377. Crossref
6. S. Sagadevan, M. Z. Rahman, E. Lonard, D. Losic, V. Hessel. Nanomaterials. 13 (5), 846 (2023). Crossref
7. L. A. Chernozatonskii, P. B. Sorokin, A. G. Kvashnin, D. G. Kvashnin. JETP Letters. 90 (2), 134 (2009). Crossref
8. C. J. Wort, R. S. Balmer. Materials Today. 11 (1-2), 22 (2008). Crossref
9. A. R. Muniz, D. Maroudas. Phys. Rev. B. 86 (7), 075404 (2012). Crossref
10. S. Paul, K. Momeni. J. Phys. Chem. C. 123 (25), 15751 (2019). Crossref
11. Z. Zheng, H. Zhan, Y. Nie, X. Xu, D. Qi, Y. Gu. Carbon. 161, 809 (2020). Crossref
12. G. Qin, L. Wu, H. Gou. Function. Diam. 1 (1), 83 (2021). Crossref
13. P. V. Bakharev, M. Huang, M. Saxena, S. W. Lee, S. H. Joo, S. O. Park, J. Dong, D. C. Camacho-Mojica, S. Jin, Y. Kwon, M. Biswal, F. Ding, S. K. Kwak, Z. Lee, R. S. Ruoff. Nat. Nanotechnol. 15 (1), 59 (2019). Crossref
14. B. Mortazavi, F. Shojaei, B. Javvaji, M. Azizi, H. Zhan, T. Rabczuk, X. Zhuang. Appl. Surf. Sci. 528, 147035 (2020). Crossref
15. F. Piazza, M. Monthioux, P. Puech, I. C. Gerber, K. Gough. MDPI C - J. Carbon Research. 7 (1), 9 (2021). Crossref
16. F. Piazza, K. Cruz, M. Monthioux, P. Puech, I. Gerber. Carbon. 169, 129 (2020). Crossref
17. L. A. Chernozatonskii, P. B. Sorokin, A. A. Kuzubov, B. P. Sorokin, A. G. Kvashnin, D. G. Kvashnin, P. V. Avramov, B. I. Yakobson. J. Phys. Chem. C. 115 (1), 132 (2010). Crossref
18. L. A. Chernozatonskii, B. N. Mavrin, P. B. Sorokin. Phys. Status Solidi B. 249 (8), 1550 (2012). Crossref
19. R. S. Ruoff. MRS Bull. 37 (12), 1314 (2012). Crossref
20. G. Kresse, J. Furthmüller. Phys. Rev. B. 54 (16), 11169 (1996). Crossref
21. L. Zhu, W. Li, F. Ding. Nanoscale. 11 (10), 4248 (2019). Crossref
22. M. Raeisi, B. Mortazavi, E. V. Podryabinkin, F. Shojaei, X. Zhuang, A. V. Shapeev. Carbon. 167, 51 (2020). Crossref
23. V. A. Arsentiev, I. I. Blekhman, L. I. Blekhman, L. A. Weisberg, K. S. Ivanov, A. M. Krivtsov. Enrichment of Ruds. 1, 30 (2010).
24. I. E. Berinskii, A. M. Krivtsov. Mech. Solids. 45 (6), 815 (2010). Crossref
25. A. M. Krivtsov, E. A. Podol’skaya. Mech. Solids. 45 (3), 370 (2010). Crossref
26. Y.-C. Wu, J.-L. Shao, Z. Zheng, H. Zhan. J. Phys. Chem. C. 125 (1), 915 (2020). Crossref
27. A. R. Muniz, A. S. Machado, D. Maroudas. Carbon. 81, 663 (2015). Crossref
28. T. V. Vu, H. V. Phuc, S. Ahmad, V. Q. Nha, C. V. Lanh, D. P. Rai, A. I. Kartamyshev, K. D. Pham, L. C. Nhan, N. N. Hieu. RSC Advances. 11 (38), 23280 (2021). Crossref
29. LAMMPS Molecular Dynamics Simulator: https://www.lammps.org/.
30. S. Plimpton. J. Comput. Phys. 117 (1), 1 (1995). Crossref
31. A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in ‘t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, S. J. Plimpton. Comput. Phys. Commun. 271, 108717 (2022). Crossref
32. S. J. Stuart, A. B. Tutein, J. A. Harrison. J. Chem. Phys. 112 (14), 6472 (2000). Crossref
33. M. A. Rozhkov, N. D. Abramenko, A. L. Kolesnikova, A. E. Romanov. Letter. Mater. 10 (4s), 551 (2020). Crossref
34. M. Garg, S. Ghosh, V. Padmanabhan. Letter. Mater. 11 (3), 321 (2021). Crossref
35. K. A. Bukreeva, A. M. Iskandarov, S. V. Dmitriev, Y. Umeno. Letter. Mater. 3 (4), 318 (2013). (in Russian) [К. А. Букреева, А. М. Искандаров, С. В. Дмитриев, Y. Umeno. Письма о материалах. 3 (4), 318 (2013).]. Crossref
36. R. I. Babicheva, S. V. Dmitriev, E. A. Korznikova, K. Zhou. J. Exp. Theor. Phys. 129 (1), 66 (2019). Crossref
37. M. Chen, A. R. Muniz, D. Maroudas. ACS Appl. Mater. Interfaces. 10 (34), 28898 (2018). Crossref
38. F. Mouhat, F.-X. Coudert. Phys. Revi. B. 90 (22), 224104 (2014). Crossref
39. A. Sakhaee-Pour. Solid State Commun. 149 (1-2), 91 (2009). Crossref
40. T. Pakornchote, A. Ektarawong, B. Alling, U. Pinsook, S. Tancharakorn, W. Busayaporn, T. Bovornratanaraks. Carbon. 146, 468 (2019). Crossref
41. M. Tahani, S. Safarian. J. Braz. Soc. Mech. Sci. Eng. 41 (1), 3 (2018). Crossref
42. H. J. McSkimin, P. Andreatch. J. Appl. Phys. 43 (7), 2944 (1972). Crossref
43. F. Cellini, F. Lavini, T. Cao, W. de Heer, C. Berger, A. Bongiorno, E. Riedo. FlatChem. 10, 8 (2018). Crossref
44. R. Pastorelli, A. Ferrari, M. Beghi, C. Bottani, J. Robertson. Diam. Relat. Mater. 9 (3-6), 825 (2000). Crossref
45. F. Liu, P. Ming, J. Li. Phys. Rev. B. 76 (6), 064120 (2007). Crossref
46. Q. Lu, R. Huang. Int. J. Appl. Mech. 01 (03), 443 (2009). Crossref
47. T. Chang, H. Gao. J. Mech. Phys. Solids. 51 (6), 1059 (2003). Crossref
48. K. V. Zakharchenko, M. I. Katsnelson, A. Fasolino. Phys. Rev. Lett. 102 (4), 046808 (2009). Crossref
49. G. Kalosakas, N. N. Lathiotakis, C. Galiotis, K. Papagelis. J. Appl. Phys. 113 (13), 134307 (2013). Crossref
50. E. Barborini, P. Piseri, P. Milani, G. Benedek, C. Ducati, J. Robertson. Appl. Phys. Lett. 81 (18), 3359 (2002). Crossref
51. S.-J. Cho, K.-R. Lee, K. Y. Eun, J. H. Hahn, D.-H. Ko. Thin Solid Films. 341 (1-2), 207 (1999). Crossref
52. N. Savvides, T. J. Bell. J. Appl. Phys. 72 (7), 2791 (1992). Crossref
53. A. G. Kvashnin, P. B. Sorokin. J. Phys. Chem. 5 (3), 541 (2014). Crossref

Similar papers

Funding

1. Ministry of Education and Science of the Republic of Bashkortostan - #1