Dynamics of Zn segregation in symmetric tilt boundary ∑5(210)[001] of AlZn alloy under shear loading

S.Y. Korostelev ORCID logo , D.S. Kryzhevich ORCID logo , K.P. Zolnikov show affiliations and emails
Received 09 November 2023; Accepted 04 March 2024;
Citation: S.Y. Korostelev, D.S. Kryzhevich, K.P. Zolnikov. Dynamics of Zn segregation in symmetric tilt boundary ∑5(210)[001] of AlZn alloy under shear loading. Lett. Mater., 2024, 14(1) 85-90
BibTex   https://doi.org/10.48612/letters/2024-1-85-90

Abstract

Grain boundary sliding caused the grain boundary region to thicken and the grain boundary structure was disordered. This resulted in the increased mobility of Zn atoms in this region and the formation of a segregation layer in the center of the grain boundary.Atomic mechanisms of segregation of Zn impurities in symmetric tilt grain boundary ∑5(210)[001] of an AlZn bicrystal under shear loading are studied using the molecular dynamics method. It is revealed that grain boundary sliding occurs during loading, which leads to a significant redistribution of impurity atoms in the grain boundary region. Grain boundary sliding causes structural disorder not only in the grain boundary, but also in the regions adjacent to it. Zinс atoms in the disordered zone have a significantly increased mobility and migrate to the center of the grain boundary during loading, thus displacing Al atoms from it. Mechanically activated migration results in the formation of a Zn-rich layer in the center of the grain boundary and Zn-poor layers at its edges. It is found that segregation processes in the grain boundary region are enhanced with a decrease in the impurity concentration in the specimen and with an increase in the shear velocity. Under shear loading, the impurity concentration in the grain boundary can increase by 3 – 4 times as compared to the average Zn concentration in the specimen.

References (34)

1. J. Hu, Y. N. Shi, X. Sauvage, G. Sha, K. Lu. Science. 355, 1292 (2017).
2. H. Fu, B. Ge, Y. Xin, R. Wu, C. Fernandez, J. Huang, Q. Peng. Nano Lett. 17, 6117 (2017).
3. X. Zhao, H. Chen, N. Wilson, Q. Liu, J.-F. Nie. Nat. Commun. 10, 3243 (2019).
4. L. G. Sun, G. Wu, Q. Wang, J. Lu. Materials Today. 38, 114 (2020).
5. L. Yang, X. Li, K. Lu. Acta Metallurgia Sinica. 53, 1413 (2017).
6. D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.-P. Choi. Curr. Opin. Solid State Mater. Sci. 18, 253 (2014).
7. H. Xie, Y. Chen, T. Zhang, N. Zhao, C. Shi, C. He, E. Liu. Appl. Surf. Sci. 527, 146817 (2020).
8. F. Ji, S.-Y. Ma, T.-Z. Xin, S.-Q. Wang. Comput. Mater. Sci. 121, 1 (2016).
9. D. Zhao, Y. Li. Acta Mater. 168, 52 (2019).
10. Y.-J. Hu, Y. Wang, W. Y. Wang, K. A. Darling, L. J. Kecskes, Z.-K. Liu. Comput. Mater. Sci. 171, 109271 (2020).
12. S. J. Andersen, C. D. Marioara, J. Friis, S. Wenner, R. Holmestad. Adv. Phys. X. 3, 1479984 (2018).
13. R. Valiev. Nat. Mater. 3, 511 (2004).
14. X. Sauvage, G. Wilde, S. V. Divinski, Z. Horita, R. Z. Valiev. Materials Science and Engineering: A. 540, 1 (2012).
15. K. Edalati, Z. Horita, R. Z. Valiev. Sci. Rep. 8, 6740 (2018).
16. M. Nicolas, A. Deschamps. Acta Mater. 51, 6077 (2003).
17. G. Yi, D. A. Cullen, K. C. Littrell, W. Golumbfskie, E. Sundberg, M. L. Free. Metallurgical and Materials Transactions A. 48, 2040 (2017).
19. X. Yu, H. Xie, D. Zhao, C. Shi, C. He, E. Liu, J. Sha, N. Zhao. Comput. Mater. Sci. 212, 111604 (2022).
21. D. E. Dickel, M. I. Baskes, I. Aslam, C. D. Barrett. Model. Simul. Mat. Sci. Eng. 26, 045010 (2018).
22. A. Stukowski. Model. Simul. Mat. Sci. Eng. 18, 015012 (2010).
23. Y. Mishin, D. Farkas. Philosophical Magazine A. 78, 29 (1998).
24. W. J. Briels, H. L. Tepper. Phys. Rev. Lett. 79, 5074 (1997).
25. V. I. Mazhukin, A. V. Shapranov. Keldysh Institute Preprints. 31, 27 (2012).
27. E. V. Bobruk, X. Sauvage, N. A. Enikeev, R. Z. Valiev. Mater. Lett. 254, 329 (2019).
28. B. B. Straumal, X. Sauvage, B. Baretzky, A. A. Mazilkin, R. Z. Valiev. Scripta Mater. 70, 59 (2014).
29. R. Z. Valiev, M. Yu. Murashkin, A. Kilmametov, B. Straumal, N. Q. Chinh, T. G. Langdon. J. Mater. Sci. 45, 4718 (2010).
30. Y. G. Zhang, I. P. Jones. J. Nucl. Mater. 165, 252 (1989).
31. A. I. Dmitriev, K. P. Zolnikov, S. G. Psakhie, S. V. Goldin, V. E. Panin. Theoretical and Applied Fracture Mechanics. 43, 324 (2005).
32. V. E. Panin, V. A. Likhachev, Yu. V. Grinjaev. Structural levels of deformation of solids. Novosibirsk (1985).
33. T. F. Grigoreva, S. V. Cybula, S. V. Cherepanova, G. N. Krukova, A. P. Barinova, V. D. Belyh, V. V. Boldyrev. Neorganicheskie Materially. 36, 194 (2000). (in Russian) [Т. Ф. Григорьева, С. В. Цыбуля, С. В. Черепанова, Г. Н. Крюкова, А. П. Баринова, В. Д. Белых, В. В. Болдырев. Неорганические материалы. 36 (2), 194 (2000).].
34. M. V. Petrik, A. R. Kuznetsov, N. A. Enikeev, Y. N. Gornostyrev, R. Z. Valiev. Physics of Metals and Metallography. 119 (7), 647 (2018). (in Russian) [М. В. Петрик, А. Р. Кузнецов, Н. А. Еникеев, Ю. Н. Горностырев, Р. З. Валиев. ФММ. 119 (7), 647 (2018).].

Similar papers

Funding

1. Government statement of work for ISPMS SB RAS - Project FWRW-2021-0002