Zero misorientation interfaces in graphene

M.A. Rozhkov, N.D. Abramenko, A.L. Kolesnikova, A.E. Romanov show affiliations and emails
Received 21 September 2020; Accepted 13 October 2020;
Citation: M.A. Rozhkov, N.D. Abramenko, A.L. Kolesnikova, A.E. Romanov. Zero misorientation interfaces in graphene. Lett. Mater., 2020, 10(4s) 551-557
BibTex   https://doi.org/10.22226/2410-3535-2020-4-551-557

Abstract

Zero misorientation interfaces (ZMIs) in graphene and their disclination schemes.
Minimum disclination strength is ω = π/3.This article presents the results on the modeling of straight-line interfaces that induce no misorientation of adjacent regions in graphene: zero misorientation interfaces (ZMIs). The interfaces in the hexagonal graphene lattice are represented as ensembles of disclinated carbon rings with broken rotational symmetry of the sixth order. The basic elements of such ensembles are structural units — complexes of disclinated rings with zero disclination charge. Using molecular dynamics simulation, the energies and atomic densities for ZMIs are found. Calculations demonstrate that atomic densities in ZMIs are lower than the atomic density in defect-free graphene. No direct correlation has been revealed between the atomic density and the interface energy. It is assumed, that the elastic field caused by ZMI defect structure contributes significantly to the energy of interface. Low-energy ZMIs possess linear energies not exceeding ~0.6 – 0.8 eV / Å, that is comparable to the energies of the grain boundaries, i. e. boundaries with misorientation, in graphene. Based on a mesoscopic approach operating with disclination schemes, in which defective carbon rings are replaced by disclinations, strain maps are plotted, and energies are found for two selected low-energy ZMIs. It is demonstrated that, at the distance of ZMI half-period from interface line, strains decrease to values of ~0.05. The energies of low-energy ZMIs calculated within the framework of two approaches: atomistic and mesoscopic, although differ numerically, coincide by the order of magnitude.

References (37)

1. Z. S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, H. M. Cheng. ACS nano. 3 (2), 411 (2009). Crossref
2. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau. Nano Lett. 8 (3), 902 (2008). Crossref
3. C. Lee, X. Wei, J. W. Kysar, J. Hone. Science. 321 (5887), 385 (2008). Crossref
4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Science. 306 (5696), 666 (2004). Crossref
5. F. Banhart, J. Kotakoski, A. V. Krasheninnikov. ACS nano. 5 (1), 26 (2011). Crossref
6. A. E. Romanov, M. A. Rozhkov, A. L. Kolesnikova. Lett. Mater. 8 (4), 384 (2018). Crossref
7. A. Bagri, S. P. Kim, R. S. Ruoff, V. B. Shenoy. Nano Lett. 11 (9), 3917 (2011). Crossref
8. J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik, M. Batzill. Nature Nanotechnology. 5 (5), 326 (2010). Crossref
9. I. A. Ovid’ko. Rev. Adv. Mater. Sci. 34 (1), 1 (2013).
10. A. Luican-Mayer, J. E. Barrios-Vargas, J. T. Falkenberg, G. Autès, A. W. Cummings, D. Soriano, G. Li, M. Brandbyge, O. V. Yazyev, S. Roche, E. Y. Andrei. 2D Materials. 3 (3), 031005 (2016). Crossref
11. Z. X. Xie, Y. Zhang, L. F. Zhang, D. Y. Fan. Carbon. 113, 292 (2017). Crossref
12. R. Grantab, V. B. Shenoy, R. S. Ruoff. Science. 330 (6006), 946 (2010). Crossref
13. J. Stuart, A. B. Tutein, J. A. Harrison. J. Chem. Phys. 112 (14), 6472 (2000). Crossref
14. J. Tersoff. Phys. Rev. B. 37 (12), 6991 (1988). Crossref
15. K. Chenoweth, A. C. Van Duin, W. A. Goddard. J. Phys. Chem. A. 112 (5), 1040 (2008). Crossref
16. A. P. Sgouros, G. Kalosakas, C. Galiotis, K. Papagelis. 2D Materials. 3 (2), 025033 (2016). Crossref
17. S. Cranford, M. J. Buehler. Modell. Simul. Mater. Sci. Eng. 19 (5), 054003 (2011). Crossref
18. H. Zhao, K. Min, N. R. Aluru. Nano Lett. 9 (8), 3012 (2009). Crossref
19. M. A. Rozhkov, A. L. Kolesnikova, I. S. Yasnikov, A. E. Romanov. Low Temp. Phys. 44 (9), 918 (2018). Crossref
20. A. L. Kolesnikova, M. A. Rozhkov, I. Hussainova, T. S. Orlova, I. S. Yasnikov, L. V. Zhigilei, A. E. Romanov. Rev. Adv. Mater. Sci. 52, 91 (2017).
21. T. Y. Ng, J. J. Yeo, Z. S. Liu. Carbon. 50 (13), 4887 (2012). Crossref
22. A. S. Kochnev, I. A. Ovid’ko, B. N. Semenov. Rev. Adv. Mater. Sci. 37, 105 (2014).
23. V. A. Kuzkin, A. M. Krivtsov. Doklady Physics. 56 (10), 527 (2011). Crossref
24. J. A. Baimova, L. Bo, S. V. Dmitriev, K. Zhou, A. A. Nazarov. EPL. 103 (4), 46001 (2013). Crossref
25. LAMMPS Molecular Dynamics Simulator https://lammps.sandia.gov.
26. E. Polak, G. Ribiere. ESAIM: M2AN. 3 (R1), 35 (1969).
27. A. Stukowski. Modell. Simul. Mater. Sci. Eng. 20 (4), 045021 (2012). Crossref
28. A. E. Romanov, V. I. Vladimirov. In: Dislocations in Solids (ed. by F. R. N. Nabarro). North-Holland, Amsterdam (1992) 212 p.
29. A. E. Romanov, A. L. Kolesnikova, T. S. Orlova, I. Hussainova, V. E. Bougrov, R. Z. Valiev. Carbon. 81, 223 (2015). Crossref
30. I. S. Yasnikov, A. L. Kolesnikova, A. E. Romanov. Phys. Solid State. 58 (6), 1184 (2016). Crossref
31. MATLAB software package https://uk.mathworks.com/products/matlab.html.
32. М. А. Rozhkov, А. L. Kolesnikova, Т. S. Orlova, L. V. Zhigilei, А. Е. Romanov. Materials Physics and Mechanics. 29, 101 (2016).
33. C. J. Páez, A. L. C. Pereira, J. N. B. Rodrigues, N. M. R. Peres. Phys. Rev. B. 92 (4), 045426 (2015). Crossref
34. J. H. Chen, G. Autès, N. Alem, F. Gargiulo, A. Gautam, M. Linck, C. Kisielowski, O. V. Yazyev, S. G. Louie, A. Zettl. Phys. Rev. B. 89 (12), 121407 (2014). Crossref
35. N. Ding, X. Chen, C. M. L. Wu. Scientific Reports. 6 (1), 1 (2016). Crossref
36. P. O. Lehtinen, A. S. Foster, A. Ayuela, A. Krasheninnikov, K. Nordlund, R. M. Nieminen. Phys. Rev. Lett. 91 (1), 017202 (2003). Crossref
37. X. Fan, W. T. Zheng, J. L. Kuo. ACS Applied Materials & Interfaces. 4 (5), 2432 (2012). Crossref

Similar papers

Funding

1. Russian Science Foundation - 19-19-00617