Structure and electronic properties of 4-6-12 graphene layers functionalized by fluorine

M.B. Belenkov, V.M. Chernov show affiliations and emails
Received 15 February 2020; Accepted 21 April 2020;
This paper is written in Russian
Citation: M.B. Belenkov, V.M. Chernov. Structure and electronic properties of 4-6-12 graphene layers functionalized by fluorine. Lett. Mater., 2020, 10(3) 254-259


When fluorinating 4-6-12 graphene layers two stable polymorphic varieties of fluorographene layers T1- or T3-type can be formedThis article presents the results of theoretical studies of new polymorphic varieties of fluorographene, which can be formed on the basis of L4-6-12 graphene layers. The calculations of the geometrically optimized structure, band structure, and density of electronic states were performed by the density functional theory method in the generalized gradient approximation. As a result of the theoretical analysis, it was established that three basic structural types of CF layers — T1, T2, and T3 — can be formed, which differ by the order of fluorine atom attachments. In these polymorphic varieties, all carbon atoms are in equivalent structural positions. When calculating the optimized structure of CF polymorphs, it was found that only T1 and T3 varieties have a stable structure. The structure of T2 type layers collapsed during the optimization. The crystal lattices of CF-L4-6-12-T1 and CF-L4-6-12-T3 are hexagonal, with 24 atoms in each of their unit cells. The layer density of the fluorographene layers is 1.42 and 1.52 mg/m2 for T1 and T2 types, respectively. The carbon-carbon bonds in the structure of the layers have different lengths and vary from 1.5157 to 1.6602 Å. The reason for this is the different number of electron pairs forming the corresponding covalent bond. The angles between bonds in CF layers vary over the wide range from 85.00° to 133.47°, which is caused by deformation of the layer structure in comparison with the diamond structure. The sublimation energy of the T1 type fluorographene layer is 13.84 eV / (CF), and the T3 layer is 13.80 eV / (CF). Fluorographene polymorphs are semiconductors with the band gap of 3.193 eV for the CF-L4-6-12-T1 layer and 4.150 eV for the CF-L4-6-12-T3 layer.

References (27)

1. M. Freitag. Nature nanotechnology. 3 (8), 455 (2008). Crossref
2. G. Omar, M. A. Salim, B. R. Mizah, A. A. Kamarolzaman, R. Nadlene. In: Functionalized graphene nanocomposites and their derivatives. Ed. by M. Jawaid, R. Bouhfid, A. K. Qaiss. Amsterdam, Elsevier (2019) pp. 245 - 263. Crossref
3. S. V. Dmitriev, J. A. Baimova, A. V. Savin, Yu. S. Kivshar. Comput. Mater. Sci. 53, 194 (2012). Crossref
4. Yu. A. Baimova, S. V. Dmitriev, A. V. Savin, Yu. S. Kivshar. Phys. Solid State. 54 (4), 866 (2012). Crossref
5. A. Enyashin, A. L. Ivanovskii. Phys. Status Solidi B. 248 (8), 1879 (2011). Crossref
6. E. A. Belenkov, A. E. Kochengin. Phys. Solid State. 57 (10), 2126 (2015). Crossref
7. M. E. Belenkov, V. M. Chernov, E. A. Belenkov, V. M. Morilova. IOP Conference Series: Materials Science and Engineering. 447, 012005 (2018). Crossref
8. M. E. Belenkov, A. E. Kochengin, V. M. Chernov, E. A. Belenkov. IOP Journal of Physics: Conference Series. 1399, 022024 (2019). Crossref
9. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov. Science. 323, 610 (2009). Crossref
10. J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, E. S. Snow. Nano Letters. 10, 3001 (2010). Crossref
11. B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, Z. Liu. ACS Nano. 5, 5957 (2011). Crossref
12. D. Chen, H. Feng, J. Li. Chem. Rev. 112, 6027(2012). Crossref
13. L. G. Bulusheva, A. V. Okotrub. In: New fluorinated carbons: fundamentals and applications. Amsterdam, Elsevier (2019) pp. 177 - 213. Crossref
14. M. E. Belenkov, V. M. Chernov, E. A. Belenkov. Chelyabinsk Physical and Mathematical Journal. 3 (2), 202 (2018). (in Russian) [М. Е. Беленков, В. М. Чернов, Е. А. Беленков. Челябинский физико-математический журнал. 3 (2), 202 (2018).]. Crossref
15. M. E. Belenkov, V. M. Chernov, E. A. Belenkov. IOP Journal of Physics: Conference Series. 1124, 022010 (2018). Crossref
16. K. S. Grishakov, K. P. Katin, M. M. Maslov, V. S. Prudkovskiy. Applied Surface Science. 463, 1051 (2019). Crossref
17. M. E. Belenkov, V. M. Chernov, E. A. Belenkov. IOP Conference Series: Materials Science and Engineering. 537, 022058 (2019). Crossref
18. M. E. Belenkov, V. M. Chernov. Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. 10, 406 (2019). (in Russian) [М. Е. Беленков, В. М. Чернов. Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 10, 406 (2019).]. Crossref
19. W. Koch, M. C. Holthausen. A chemist’s guide to density functional theory. Weinheim, Wiley-VCH (2002) 313 p. Crossref
20. D. C. Langreth, M. J. Mehl. Physical Review B. 28 (4), 1809 (1983). Crossref
21. P. Giannozzi, S. Baroni, N. Bonini et al. J. Phys.: Condens. Matter. 21 (39), 395502 (2009). Crossref
22. J. P. Perdew, A. Zunger. Phys. Rev. B. 23 (10), 5048 (1981). Crossref
23. J. P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77 (18), 3865 (1996). Crossref
24. S. V. Shulepov. Fizika ugleroda. Chelyabinsk, Metallurgiya (1990) 336 p. (in Russian) [С. В. Шулепов. Физика углерода. Челябинск, Металлургия (1990) 336 с.].
25. E. A. Belenkov. Inorganic Materials. 37 (9), 928 (2001). Crossref
26. E. A. Belenkov, V. A. Greshnyakov. Physics of the Solid State. 58 (10), 2145 (2016). Crossref
27. K. P. Katin, V. S. Prudkovskiy, M. M. Maslov. Physics Letters A. 381, 2686 (2017). Crossref

Similar papers