Modeling of synthesis pathways for diamond-like polycyclobutane phases

V.A. Greshnyakov, E.A. Belenkov show affiliations and emails
Received 21 June 2019; Accepted 18 July 2019;
Citation: V.A. Greshnyakov, E.A. Belenkov. Modeling of synthesis pathways for diamond-like polycyclobutane phases. Lett. Mater., 2019, 9(4) 428-432
BibTex   https://doi.org/10.22226/2410-3535-2019-4-428-432

Abstract

Diamond-like polycyclobutane phases can be formed under uniaxial compression of graphite.In this paper, the investigation of possible methods for obtaining two diamond-like polycyclobutane LA3 and LA5 phases was carried out using the density functional theory method. The calculations were performed in the local density approximation and the generalized gradient approximation. It was established that the structures of the polycyclobutane phases can be formed on the basis of layer precursors made of hexagonal L6 graphene and tetragonal L4–8 graphene. Tetragonal LA3 phase can be obtained from hexagonal L6 graphite with AA packing at pressures from 59 to 67 GPa. Another way to obtain this phase is compression of tetragonal L4–8 graphite AB in the pressure range from 50 to 52 GPa. Orthorhombic LA5 phase can be obtained from orthorhombic L6 graphite AB and hexagonal L6 graphite AA in the pressure ranges from 64 to 71 GPa and from 59 to 67 GPa, respectively. Also, this phase can be formed under compression of tetragonal L4–8 graphite AB when the pressure reaches 46 – 50 GPa. The minimum values of the energy barriers separating the structural states corresponding to diamond LA3 and LA5 polymorphs from the states corresponding to different types of graphite are in the range from 0.09 to 0.29 eV / atom, which indicates the stability of these phases under normal conditions. For the experimental identification of diamond-like LA5 phase formed during the compression of orthorhombic graphite along the crystallographic axis [001], a series of the X-ray diffraction patterns of the carbon material in which this phase transition takes place was calculated.

References (19)

1. H. O. Pierson. Handbook of carbon, graphite, diamond, and fullerenes: properties, processing and applications. Park Ridge, Noyes (1993) 402 p. Crossref
2. J. C. Sung, J. Lin. Diamond nanotechnology: syntheses and applications. Singapore, Pan Stanford (2010) 252 p.
3. E. A. Belenkov, V. A. Greshnyakov. Phys. Solid State. 59 (10), 1926 (2017). Crossref
4. E. A. Belenkov, V. A. Greshnyakov. J. Mater. Sci. 50 (23), 7627 (2015). Crossref
5. E. A. Belenkov, V. A. Greshnyakov. Phys. Solid State. 58 (10), 2145 (2016). Crossref
6. D. S. Lisovenko, Yu. A. Baimova, L. Kh. Rysaeva, V. A. Gorodtsov, S. V. Dmitriev. Phys. Solid State. 59 (4), 820 (2017). Crossref
7. J. А. Baimova, L. Kh. Rysaeva, A. I. Rudskoy. Diam. Relat. Mater. 81, 154 (2018). Crossref
8. E. A. Belenkov, V. A. Greshnyakov. Phys. Solid State. 57 (1), 205 (2015). Crossref
9. J. A. Baimova, L. Kh. Rysaeva. J. Struct. Chem. 59 (4), 884 (2018). Crossref
10. E. A. Belenkov, V. A. Greshnyakov. Phys. Solid State. 60 (7), 1294 (2018). Crossref
11. R. H. Baughman, A. Y. Liu, C. Cui, P. J. Schields. Synth. Met. 86, 2371 (1997). Crossref
12. R. T. Strong, C. J. Pickard, V. Milman, G. Thimm, B. Winkler. Phys. Rev. B. 70, 045101 (2004). Crossref
13. Q. Zhu, Q. Zeng, A. R. Oganov. Phys. Rev. B. 85, 201407 (R) (2012). Crossref
14. Z.-Z. Li, C.-S. Lian, J. Xu, L.-F. Xu, J.-T. Wang, C. Chen. Phys. Rev. B. 91, 214106 (2015). Crossref
15. P. Giannozzi, S. Baroni, N. Bonini et al. J. Phys.: Condens. Matter. 21 (39), 395502 (2009). Crossref
16. J. P. Perdew, A. Zunger. Phys. Rev. B. 23 (10), 5048 (1981). Crossref
17. J. P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77 (18), 3865 (1996). Crossref
18. V. A. Greshnyakov, E. A. Belenkov. Letters on Materials. 7 (3), 318 (2017). (in Russian) [В. А. Грешняков, Е. А. Беленков. Письма о материалах. 7 (3), 318 (2017).]. Crossref
19. H.-M. Hutmacher, H.-G. Fritz, H. Musso. Angew. Chem. Intern. Ed. Engl. 14 (3), 180 (1975). Crossref

Similar papers