Theoretical study of the stability and formation methods of layer diamond-like nanostructures

V.A. Greshnyakov, E.A. Belenkov show affiliations and emails
Received  23 September 2020; Accepted  07 October 2020
This paper is written in Russian
Citation: V.A. Greshnyakov, E.A. Belenkov. Theoretical study of the stability and formation methods of layer diamond-like nanostructures. Lett. Mater., 2020, 10(4) 457-462
BibTex   https://doi.org/10.22226/2410-3535-2020-4-457-462

Abstract

Structure formation of diamond-like bilayers.In this article, a theoretical study of the structure, stability, electronic properties and formation process of new two-dimensional diamond-like DL3-12 and DL4‑6‑12 nanostructures is carried out using the density functional theory method. As a result of the calculations, it is established that the structures of these diamond-like bilayers can be obtained in the process of model cross-linking of two identical graphene L3-12 or L4‑6‑12 layers. The DL3-12 and DL4‑6‑12 bilayers have hexagonal unit cells with the lattice parameters of 5.8204 and 7.5116 Å, respectively. The calculated surface density of DL3-12 and DL4‑6‑12 bilayers is 0.082 and 0.098 μg / cm2, respectively, and exceeds the density of hexagonal graphene by 7 – 28 %. The structure of the studied diamond-like bilayers contains pores with a maximum diameter of ~4.5 Å. The calculation of the electronic properties showed that the DL3-12 and DL4‑6‑12 bilayers should be semiconductors with the direct band gap widths of 1.7 and 2.3 eV, respectively. It is also found that the diamond-like DL3-12 bilayer is stable up to 200 K, whereas the DL4‑6‑12 bilayer stable up to 210 K. In the region of these temperatures, a slight corrugation of the diamond-like bilayers occurs. Destruction of the bilayers is observed at higher temperatures. The most probable method for producing the DL3-12 and DL4‑6‑12 bilayers consists in strong uniaxial compression of two graphene layers. The diamond-like DL3-12 bilayer can be formed from L3-12 graphene at pressures exceeding 16.7 GPa, while the DL4‑6‑12 bilayer can be formed from L4‑6‑12 graphene at 8.6 GPa.

References (22)

1. G. Helden, M.-T. Hsu, P. R. Kemper, M. T. Bowers. J. Chem. Phys. 95, 3835 (1991). Crossref
2. K. A. Krylova, Yu. A. Baimova, S. V. Dmitriev, R. R. Mulyukov. Phys. Solid State. 58, 394 (2016). Crossref
3. V. Yu. Dolmatov. Russ. Chem. Rev. 76, 339 (2007). Crossref
4. E. M. Baitinger, E. A. Belenkov, M. M. Brzhezinskaya, V. A. Greshnyakov. Phys. Solid State. 54, 1715 (2012). Crossref
5. V. R. Coluci, S. F. Braga, S. B. Legoas, D. S. Galva, R. H. Baughman. Phys. Rev. B. 68, 035430 (2003). Crossref
6. E. A. Belenkov, V. V. Mavrinskii, V. A. Greshnyakov, M. M. Brzhezinskaya. IOP Conf. Ser.: Mater. Sci. Eng. 537, 022070 (2019). Crossref
7. S. Wang, J. Li, X. Zhu, M. Wang. Carbon. 143, 517 (2019). Crossref
8. S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, P. Jena. Proc. Natl. Acad. Sci. U. S. A. 112, 2372 (2015). Crossref
9. K. A. Krylova, J. A. Baimova, I. P. Lobzenko, A. I. Rudskoy. Physica B: Condensed Matter. 583, 412020 (2020). Crossref
10. I. Lobzenko, J. Baimova, K. Krylova. Chem. Phys. 530, 110608 (2020). Crossref
11. L. K. Rysaeva, E. A. Korznikova, R. T. Murzaev, D. U. Abdullina, A. A. Kudreyko, J. A. Baimova, D. S. Lisovenko, S. V. Dmitriev. Facta Universitatis, Series: Mechanical Engineering. 18, 1 (2020). Crossref
12. R. I. Babicheva, S. V. Dmitriev, E. A. Korznikova, K. Zhou. J. Exp. Theor. Phys. 129, 66 (2019). Crossref
13. V. A. Greshnyakov, E. A. Belenkov. J. Struct. Chem. 61, 835 (2020). Crossref
14. J. J. P. Stewart. J. Mol. Model. 19, 1 (2013). Crossref
15. P. Giannozzi, S. Baroni, N. Bonini et al. J. Phys.: Condens. Matter. 21, 395502 (2009). Crossref
16. J. P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996). Crossref
17. V. A. Greshnyakov, E. A. Belenkov. Tech. Phys. 61, 1462 (2016). Crossref
18. V. A. Greshnyakov, E. A. Belenkov. Letters on Materials. 7(3), 318 (2017). (in Russian) [В. А. Грешняков, Е. А. Беленков. Письма о материалах. 7(3), 318 (2017).]. Crossref
19. E. A. Belenkov, V. A. Greshnyakov. Phys. Solid State. 58, 2145 (2016). Crossref
20. M. M. Maslov, K. S. Grishakov, M. A. Gimaldinova, K. P. Katin. Fullerenes, Nanotubes and Carbon Nanostructures. 28, 97 (2019). Crossref
21. Z. W. Wang, Y. S. Zhao, K. Tait, X. Z. Liao, D. Schiferl, C. S. Zha, R. T. Downs, J. Qian, Y. T. Zhu, T. D. Shen. Proc. Natl. Acad. Sci. USA. 101, 13699 (2004). Crossref
22. E. A. Belenkov, V. A. Greshnyakov. Phys. Solid State. 60, 1294 (2018). Crossref

Similar papers