Solid state amorphization in a thin Fe-Si-Mg-O surface film triggered by the reduction of elements from oxides in the temperature range of the α-γ transformation

M.L. Lobanov, A.S. Yurovskikh, P.L. Reznik ORCID logo , N.N. Nikul’chenkov, G.M. Rusakov, A.A. Redikul’tsev show affiliations and emails
Received 27 June 2019; Accepted 16 December 2019;
Citation: M.L. Lobanov, A.S. Yurovskikh, P.L. Reznik, N.N. Nikul’chenkov, G.M. Rusakov, A.A. Redikul’tsev. Solid state amorphization in a thin Fe-Si-Mg-O surface film triggered by the reduction of elements from oxides in the temperature range of the α-γ transformation. Lett. Mater., 2020, 10(1) 83-88
BibTex   https://doi.org/10.22226/2410-3535-2020-1-83-88

Abstract

Solid solution «amorphisation» is observed at heating in the temperature range corresponding to α-γ transformation (920-960°C). Amorphous-like material state is retained both at subsequent heating (to 1060 °C) and cooling (to 20 °С), which is super-stable compared to the established metallic glasses.The study of the processes occurring in the surface layer of the MgO coated commercial alloy Fe-3 %Si-0.5 %Cu (grain oriented electrical steel) demonstrated that the amorphous phase in the form of a Fe-based solid solution is formed during continuous heating in the 95 %N2 + 5 %H2 atmosphere. For the purposes of this study, the following methods were used: non-ambient XRD at 20 –1060°C with heating and cooling at a rate of 0.5 dps, layer-by-layer chemical analysis performed by a glow discharge analyzer, scanning electron microscopy and energy dispersive X-ray spectroscopy. ThermoCalc software was used to calculate the potential phase equilibrium states. The amorphous phase was formed in the α → γ transformation temperature range, when the heating rates were altered in the surface layer of 1 µm initially consisted of a solid α-Fe-based solution with ~1– 2 wt.% Si with (MgFe)2SiO4, (MgFe)O, SiO2 oxide inclusions. We suppose that (MgFe)2SiO4 oxides are partly reduced by H2 to Mg2Si molecular complexes, which become solid solutions in the temperature range of the metastability of the α-Fe crystal lattice with subsequent amorphization as an alternative to the α → γ transition. The amorphous state is obtained at 920 – 960°C and is retained both at subsequent heating (to 1060°C) and cooling (to 20°С), which is super-stable compared to the established metallic glasses. The composition of the amorphous phase can be described by the formula Fe89.5Si6Mg4Cu0.5.

References (26)

1. W. Klement, R. H. Willens, P. Duwez. Nat. 187, 869 (1960). Crossref
2. A. Inoue, A. Takeuchi. Acta Mater. 59, 2243 (2011). Crossref
3. K. Suzuki, H. Fujimori, K. Hashimoto. Materials Science of Amorphous Metals (ed. by T. Masumoto). Ohmsha, Tokyo (1982) 281 p.
4. E. V. Levchenko, A. V. Evteev, A. R. Yavari, D. V. Louzguine-Luzgin, I. V. Belova, G. E. Murch. Philos. Mag. Lett. 93, 50 (2013). Crossref
5. N. N. Nikul’chenkov, A. S. Yurovskikh, Y. N. Starodubtsev, M. L. Lobanov. Lett. Mater. 9, 64 (2019). (in Russian) [Н. Н. Никульченков, А. С. Юровских, Ю. Н. Стародубцев, М. Л. Лобанов. Письма о материалах. 9, 64 (2019).]. Crossref
6. V. Schnabel, M. Köhler, D. Music, J. Bednarcik, W. J. Clegg, D. Raabe, J. M. Schneider. J. Phys.: Condens. Matter. 29, 265502 (2017). Crossref
7. B. Zang, R. Parsons, K. Onoder, H. Kishimoto, A. Kato, A. C. Y. Liu, K. Suzuki. Scripta Mater. 132, 68 (2017). Crossref
8. K. Suzuki, R. Parsons, B. Zang, K. Onodera, H. Kishimoto, A. Kato. Appl. Phys. Lett. 110, 012407 (2017). Crossref
9. C. Suryanarayana, A. Inoue. Inter. Mater. Rev. 58 (3), 131 (2013). Crossref
10. R. B. Schwarz, W. L. Johnson. Phys. Rev. Lett. 51 (5), 415 (1983). Crossref
11. B. X. Liu, W. S. Lai, Z. J. Zhang. Adv. Phys. 50 (4), 367 (2001). Crossref
12. H. Gavrila, V. Ionita. Journal of Optoelectronics and Advanced Materials. 4, 173 (2002).
13. Y. R. Zhang, R. V. Ramanujan. J. Mater. Sci. 41, 5292 (2006). Crossref
14. L. Morsdorf, K. G. Pradeep, G. Herzer, A. Kovács, R. E. Dunin-Borkowski, I. Povstugar, G. Konygin, P. Choi, D. Raabe. J. Appl. Phys. 119, 124903 (2016). Crossref
15. V. Schnabel, M. Kohler, S. Evertz, J. Gamcova, J. Bednarcik, D. Music, D. Raabe, J. M. Schneider. Acta Mater. 107, 213 (2016). Crossref
16. M. L. Lobanov, G. M. Rusakov, A. A. Redikul’tsev. Met. Sci. Heat Treat. 53, 326 (2011). Crossref
17. G. S. Korzunin, M. L. Lobanov, A. A. Redikultsev, L. V. Lobanova. Russ. J. Nondestr. Test. 50, 585 (2014). Crossref
18. M. L. Lobanov, A. S. Yurovskih. Met. Sci. Heat Treat. 58, 5667 (2017). Crossref
19. T. Takamiya, K. Hanazawa, T. Suzuki. JFE Technical Report. 21, 1 (2016).
20. S. Fortunati, G. C. Abbruzzese, S. Cicalè. New Frontiers for Grain Oriented Electrical Steels: Products and Technologies. 7th International Conference on Magnetism and Metallurgy (2016) Terni, Italy.
21. S. Jung, M. S. Kwon, S. B. Kim, K. S. Shin. Surface Interface Analysis. 45, 1119 (2013). Crossref
22. S. Jung, M. S. Kwon, J. Park, S. B. Kim, Y. Huh. ISIJ International. 51, 1163 (2011). Crossref
23. P. Rodriguez-Calvillo, E. Leunis, T. Van De Putte, S. Jacobs, O. Zacek, W. Saikaly. AIP Advances. 8, 047605 (2018). Crossref
24. H. Toda, K. Sato, M. Komatsubara. J. Mater. Eng. Perform. 6, 722 (1997). Crossref
25. M. L. Lobanov, A. I. Gomzikov, S. V. Akulov, A. I. Pyatygin. Met. Sci. Heat Treat. 47, 478 (2005). Crossref
26. T. Yi, S. Chen, S. Li, H. Yang, S. Bux, Z. Bian, N. A. Katcho, A. Shakouri, N. Mingo, J. Fleurial, N. D. Browning, S. M. Kauzlarich. J. Mater. Chem. 22, 24805 (2012). Crossref

Similar papers

Funding

1. Government of the Russian Federation - Contract No. 02.A03.21.0006
2. Ministry of Education and Science of the Russian Federation - No. 11.1465.2014/K
3. Russian Foundation for Basic Research - 20‑08‑00332