Electric field controlled magnetic phase transition in Fe49Rh51 based magnetoelectric composites

A.A. Amirov, A.S. Starkov, I.A. Starkov, A.P. Kamantsev, V.V. Rodionov show affiliations and emails
Received 09 July 2018; Accepted 15 August 2018;
This paper is written in Russian
Citation: A.A. Amirov, A.S. Starkov, I.A. Starkov, A.P. Kamantsev, V.V. Rodionov. Electric field controlled magnetic phase transition in Fe49Rh51 based magnetoelectric composites. Lett. Mater., 2018, 8(3) 353-357
BibTex   https://doi.org/10.22226/2410-3535-2018-3-353-357


In the three-layer composite PZT / FeRh / PZT, the possibility of control the temperature of the magnetic transition and width of the hysteresis by electric field was demonstrated.The three-layer magnetoelectric composite PZT/FeRh/PZT consisting of a layer of a magnetic alloy Fe49Rh51 and two layers of a piezoelectric PbZr0.53Ti0.47O3 was fabricated, and its magnetic properties were studied. Analysis of the temperature dependences of magnetic susceptibility demonstrated a phase transition at ~324 K in heating regime and ~315 K in cooling. The observed transition corresponds to the magnetostructural transformation from the antiferromagnetic state to the ferromagnetic one. Application of voltage across the composite induces a mechanical stress on the magnetic layer that leads to a decrease in the magnetic susceptibility and shift of the transition temperatures. Moreover, this mechanical stress changes the shape and area of the hysteresis, which can be used for control of magnetic properties of materials.

References (22)

1. M. Tishin, Y. I. Spichkin. The Magnetocaloric Effect and its Applications. Inst. of Physics, New York (2003).
2. V. Franco, J. S. Blazquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramirez, A. Conde. Progress in Materials Science. 93, 112 (2018). Crossref
3. D. Sander et al. J. Phys. D: Appl. Phys. 50, 363001 (2017). Crossref
4. Kh. Ya. Mulyukov, I. I. Musabirov, A. V. Mashirov. Letters on Materials. 2(4), 194 (2012). (in Russian) [Х. Я. Мулюков, И. И. Мусабиров, А. В. Маширов. Письма о материалах. 2(4), 194 (2012).]. Crossref
5. V. V. Khovaylo, V. V. Rodionova, S. N. Shevyrtalov, V. Novosad. Phys. Status Solidi B. 251(10), 2104 (2014).
6. S. Nikitin, G. Myalikgulyev, A. Tishin, M. Annaorazov, K. Asatryan, A. Tyurin. Phys.Lett. A. 148, 363 (1990). Crossref
7. A. I. Zakharov, A. M. Kadomtseva, R. Z. Levitin, E. G. Ponyatovskii. Sov. Phys. JETP-USSR. 19, 1348 (1964). (in Russian) [А. И. Захаров, А. М. Кадомцева, Р. З. Левитин, Е. Г. Понятовский. ЖЭТФ. 46, 2003 (1964).].
8. A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, R. M. Grechishkin, A. R. Kaul’, V. Sampath. Applied Physics Letters. 109, 202407 (2016). Crossref
9. A. Chirkova, K. Skokov, L. Schultz, N. Baranov, O. Gutfleisch, T. Woodcock. Acta Mater. 106, 15 (2016). Crossref
10. E. Stern-Taulats, T. Castán, L. Mañosa, A. Planes, N. D. Mathur, X. E. Moya. MRS Bulletin. 43(4), 295 (2018). Crossref
11. L. Manosa, D. Gonzalez-Alonso, A. Planes, E. Bonnot, M. Barrio, J. L. Tamarit, S. Aksoy, M. Acet. Nature Materials. 9, 478 (2010). Crossref
12. I. A. Starkov, A. S. Starkov. Int. J. Solids Struct. 100, 187 (2016). Crossref
13. R. O. Cherifi, V. Ivanovskaya, L. C. Phillips, A. Zobelli, I. C. Infante, E. Jacquet, V. Garcia, S. Fusil, P. R. Briddon, N. Guiblin, A. Mougin, A. A. Unal, F. Kronast, S. Valencia, B. Dkhil, A. Barthelemy, M. Bibes. Nature Materials. 13, 345 (2014). Crossref
14. Q. B. Hu, J. Li, C. C. Wang, Z. J. Zhou, Q. Q. Cao, T. J. Zhou, D. H. Wang, and Y. W. Du. Appl. Phys. Lett. 110, 222408 (2017). Crossref
15. Y.-Y. Gong, D.-H. Wang, Q.-Qi. Cao, En-Ke Liu, J. Liu, Y.-W. Du. Adv. Mater. 27(5), 1 (2015). Crossref
16. A. A. Amirov, V. V. Rodionov, I. A. Starkov, A. S. Starkov, A. M. Aliev. Journal of Magnetism and Magnetic Materials. In Press, Corrected Proof (2018). Crossref
17. A. A.Amirov, A. B. Batdalov, S. N. Kallaev, Z. M. Omarov, I. A. Verbenko, O. N. Razumovskaya, L. A. Reznichenko, L. A. Shilkina. Phys. Solid State. 51, 1189 (2009). (in Russian) [А. А. Амиров, А. Б. Батдалов, С. Н. Каллаев, З. М. Омаров, И. А. Вербенко, О. Н. Разумовская, Л. А. Резниченко, Л. А. Шилкина. Физика твердого тела. 51(6), 1123 (2009).].
18. E. Stern-Taulats, T. Castan, A. Planes, L. H. Lewis, R. Barua, S. Pramanick, S. Majumdar, L. Manosa. Phys. Rev. B. 95, 104424 (2017). Crossref
19. Ce-Wen Nan, M. I. Bichurin, Shuxiang Dong, D. Viehland, G. Srinivasan. J. Appl. Phys. 103, 031101 (2008). Crossref
20. I. A. Starkov, A. S. Starkov. Solid State Commun. 226, 5 (2016). Crossref
21. V. I. Zverev, A. M. Saletsky, R. R. Gimaev, A. M. Tishin, T. Miyanaga, J. B. Staunton. Appl. Phys. Lett. 108, 192405 (2016). Crossref
22. A. Starkov, I. Starkov. Ferroelectrics. 461, 50 (2014). Crossref

Cited by (5)

A. A. Amirov, I. A. Baraban, A. A. Grachev, A. P. Kamantsev, V. V. Rodionov, D. M. Yusupov, V. V. Rodionova, A. V. Sadovnikov. AIP Advances. 10(2), 025124 (2020). Crossref
A. A. Amirov, F. Cugini, A. P. Kamantsev, T. Gottschall, M. Solzi, A. M. Aliev, Yu. I. Spichkin, V. V. Koledov, V. G. Shavrov. Journal of Applied Physics. 127(23), 233905 (2020). Crossref
A. P. Kamantsev, A. A. Amirov, Yu. S. Koshkid’ko, C. Mejía, A. V. Mashirov, A. M. Aliev, V. V. Koledov, V. G. Shavrov. Phys. Solid State. 62(1), 160 (2020). Crossref
A. Amirov, D. Yusupov, K. Sobolev. Lett. Mater. 11(2), 213 (2021). Crossref
A. Amirov, T. Gottschall, A. Chirkova, A. Aliev, N. Baranov, K. Skokov, O. Gutfleisch. J. Phys. D: Appl. Phys. 54(50), 505002 (2021). Crossref

Similar papers