The study of phase transition in systems with the competing interactions in a magnetic field by computer modeling

Received 22 August 2019; Accepted 03 October 2019;
This paper is written in Russian
Citation: S.V. Belim. The study of phase transition in systems with the competing interactions in a magnetic field by computer modeling. Lett. Mater., 2020, 10(1) 5-9
BibTex   https://doi.org/10.22226/2410-3535-2020-1-5-9

Abstract

Phase diargamm for a system with competing ferromagnetic and antiferromagnetic interactions.In this article, spin systems with competing interactions in an external magnetic field are investigated. The Ising model with ferromagnetic short-range forces and long-range antiferromagnetic forces is considered. Long-range forces decrease according to the power law. Long-range interaction is characterized by the rate of decrease with distance and relative intensity. The Metropolis algorithm is used for computer modeling. Two order parameters for ferromagnetic and antiferromagnetic ordering are used. The theory of finite size scaling is used. The transition temperature was defined based on Binder's cumulants for each of the order parameters. The phase diagram for the system is constructed at various values of the long-range interaction parameters. As the temperature decreases, the system can transfer from the paramagnetic phase into the ferromagnetic and antiferromagnetic ones. The type of the low-temperature phase depends on the intensity of long-range forces and does not depend on the rate of decrease of the interaction with distance. There is a boundary value of the intensity of long-range forces, below which the ferromagnetic phase is implemented, and above it is the antiferromagnetic phase. The change in the phase diagram under the influence of an external magnetic field is investigated. In an external magnetic field, the ferromagnetic phase transition becomes spread. The temperature of the antiferromagnetic phase transition in an external field decreases according to the square law. The boundary value of the intensity of long-range forces linearly grows with increasing the intensity of the external magnetic field. An increase in the boundary value in a magnetic field leads to a change in the type of the low-temperature phase. This effect is shown as a phase transition from the antiferromagnetic to the ferromagnetic phase in the external magnetic field. A comparison with the data of real experiments is carried out.

References (29)

1. P. Kayser, M. J. Martinez-Lope, J. A. Alonso, M. Retuerto, M. Croft, A. Ignatov, M. T. Fernandez-Diaz. Inorg. Chem. 52, 11013 (2013). Crossref
2. X. Ou, Z. Li, F. Fan, H. Wang, H. Wu. Sci. Rep. 4, 7542 (2014). Crossref
3. J. Enkovaara, O. Heczko, A. Ayuela, R. M. Nieminen. Phys. Rev. B. 67, 212405 (2003). Crossref
4. E. Luijten, H. W. J. Blote. Phys. Rev. B. 56, 8945 (1997). Crossref
5. S. V. Belim. JETP Letters. 77, 2, 112 (2003). Crossref
6. S. V. Belim. Herald of the Bauman Moscow State Tech. Univ., Nat. Sci. 1, 37 (2019). Crossref
7. E. Bayong, H. T. Diep. Phys. Rev. B. 59, 11919 (1999). Crossref
8. E. Luijten. Phys. Rev. E. 60, 7558 (1999). Crossref
9. S. V. Belim, I. B. Larionov, R. V. Soloneckiy. Phys. Metals Metallogr. 117, 1079 (2016). Crossref
10. W. Li, H. P. Kunkel, X. Z. Zhou, G. Williams, Y. Mukovskii, D. Shulyatev. J. Phys. Condens. Matter. 16, L109 (2004). Crossref
11. M. G. Pini, A. Rettori, P. Betti, J. S. Jiang, Y. Ji, S. G. E. te Velthuis, G. P. Felcher, S. D. Bader. J. Phys.: Condens. Matter. 19, 479003 (2007). Crossref
12. H. W. J. Blote, X. N. Wu. J. Phys. A. 23, L627 (1990). Crossref
13. A. A. Tarasenko, L. Jastrabik, F. Nieto, C. Uebing. Phys. Rev. B. 59, 8252 (1999). Crossref
14. X.-Z. Wang, J. S. Kim. Phys. Rev. Lett. 78, 413 (1997). Crossref
15. D. P. Landau, K. Binder. Phys. Rev. B. 17, 2328 (1978). Crossref
16. D. I. Gorbunov, M. S. Henriques, N. Qureshi, B. Ouladdiaf, C. S. Mejia, J. Gronemann, A. V. Andreev, V. Petricek, E. L. Green. Phys. Rev. Materials. 2, 084406 (2018). Crossref
17. F. Casanova, S. de Brion, A. Labarta, X. Batlle. J. Phys. D: Appl. Phys. 38, 3343 (2005). Crossref
18. V. K. Pecharsky, K. A. Gschneidner Jr. J. Alloys Compounds. 260, 98 (1997). Crossref
19. L. Morellon, J. Blasco, P. A. Algarabel, M. R. Ibarra. Phys. Rev. B. 62, 1022 (2000). Crossref
20. E. M. Levin, K. A. Gschneidner Jr., V. K. Pecharsky. Phys. Rev. B. 65, 214427 (2002). Crossref
21. C. Magen, L. Morellon, P. A. Algarabel, C. Marquina, M. R. Ibarra. J. Phys.: Condens. Matter, 15, 2389 (2003). Crossref
22. Y. Zuo, R. Chahine, T. K. Bose. IEEE Trans. Magn. 39, 3358 (2003). Crossref
23. V. Hardy, S. Majumdar, S. J. Crowe, M. R. Lees, D. McK. Paul, L. Herve, A. Maignan, S. Hebert, C. Martin, C. Yaicle, M. Hervieu, B. Raveau. Phys. Rev. B. 69, 020407 (R) (2004). Crossref
24. F. Casanova, A. Labarta, X. Batlle, J. Marcos, L. Manosa, A. Planes, S. de Brion. Phys. Rev. B. 69, 104416 (2004). Crossref
25. H. Tang, V. K. Pecharsky, K. A. Gschneidner Jr., A. O. Pecharsky. Phys. Rev. B. 69, 064410 (2004). Crossref
26. V. K. Pecharsky, K. A. Gschneidner Jr. Appl. Phys. Lett. 70, 3299 (1997). Crossref
27. Z. W. Ouyang. J. of Appl. Phys. 108, 033907 (2010). Crossref
28. Z. W. Ouyang, V. K. Pecharsky, K. A. Gschneidner Jr., D. L. Schlagel, T. A. Lograsso. Phys. Rev. B. 74, 094404 (2006). Crossref
29. N. Perez, F. Casanova, F. Bartolome, L. M. Garcia, A. Labarta, X. Batlle. Phys. Rev. B. 83, 184411 (2011). Crossref

Similar papers