Effect of disorder on phase transitions in antidote lattice thin films: computer simulations

S.V. Belim ORCID logo , S.S. Simakova ORCID logo , I.V. Tikhomirov show affiliations and emails
Received: 04 June 2023; Revised: 07 July 2023; Accepted: 10 July 2023
Citation: S.V. Belim, S.S. Simakova, I.V. Tikhomirov. Effect of disorder on phase transitions in antidote lattice thin films: computer simulations. Lett. Mater., 2023, 13(4) 304-307
BibTex   https://doi.org/10.22226/2410-3535-2023-4-304-307

Abstract

Thin film with antidote lattice.Computer modeling of a thin ferromagnetic film with an antidote lattice is carried out using the Monte Carlo method. The model considers random displacements in the location of pores. The Ising model is used to describe the magnetic properties of the system. The Metropolis’s algorithm forms the thermodynamic states of the system. The finite-dimensional scaling theory is used to calculate the Curie temperature of the system and critical exponents. The Curie temperature is calculated for various ratio for the size of a pore and the period for a lattice of antidotes. A computer experiment showed a logarithmic dependence of the phase transition temperature on the pore area on the film surface. Critical exponents are calculated for different pore sizes. Two types of critical behavior can be observed in the system as the pore area increases. Each class of critical behavior has its own set of critical exponents. The first universality class coincides with the universality class for a continuous thin film. There is a critical pore size that creates a new class of universality for critical behavior. Small deviations in the arrangement of pores from the nodes of the square lattice do not change the Curie temperature and critical exponents. The critical parameter is the relative pore area.

References (33)

1. L. Moore, D. Goldhaber-Gordon. Nature Phys. 3, 295 (2007). Crossref
2. V. Beroulle, I. Bertrand, L. Latorre, P. Nouet. Sensors and Actuators A: Physical. 103, 23 (2003). Crossref
3. K. Seemann, H. Leiste, C. Ziebert, J. Magn. Magn. Mater. 316, e879 (2007). Crossref
4. D. C. Leitao et al. J. Phys.: Condens. Matter. 25, 066007 (2013). Crossref
5. O. N. Martyanov et al. Phys. Rev. B. 75, 174429 (2007). Crossref
6. J. Gräfe, G. Schütz, E. J. Goering. J. Magn. Magn. Mater. 419, 517 (2016). Crossref
7. J. Cumings, L. J. Heyderman, C. H. Marrows, R. L. Stamps. New J. Phys. 16, 075016 (2014). Crossref
8. A. Schumann, B. Sothmann, P. Szary, H. Zabel. Appl. Phys. Lett. 97, 022509 (2010). Crossref
9. C. Castán-Guerrero et al. J. Korean Phys. Soc. 62, 1521 (2013). Crossref
10. J. Braun, B. Gompf, G. Kobiela, M. Dressel. Phys. Rev. Lett. 103, 203901 (2009). Crossref
11. N. Li et al. AIP Advances. 5, 047101 (2015). Crossref
12. A. Plettl et al. Adv. Funct. Mater. 19, 3279 (2009). Crossref
13. H. Fang et al. Appl. Phys. Lett. 106, 153104 (2015). Crossref
14. K. Kern et al. Phys. Rev. Lett. 66, 1618 (1991). Crossref
15. D. Weiss et al. Phys. Rev. Lett. 70, 4118 (1993). Crossref
16. C. C. Wang, A. O. Adeyeye, N. Singh. Nanotechnology. 17, 1629 (2006). Crossref
17. S. Tacchi et al. IEEE Transactions on Magnetics. 46 (6), 1440 (2010). Crossref
18. U. Wiedwald et al. Beilstein J. Nanotechnol. 7, 733 (2016). Crossref
19. S. V. Belim, S. S. Belim, I. V. Tikhomirov, I. V. Bychkov. Coatings. 12, 1526 (2022). Crossref
20. S. V. Belim, I. V. Bychkov. Nanomaterials. 12, 3705 (2022). Crossref
21. A. B. Harris. J. Phys. 7 (9), 1671 (1974). Crossref
22. V. V. Prudnikov et al. Phys. Solid State. 40, 1383 (1998). Crossref
23. V. V. Prudnikov, O. N. Markov. J. Phys. A. 28, 1549 (1995). Crossref
24. K. Binder. Phys. Rev. Lett. 47, 693 (1981). Crossref
25. N. A. Kulesh et al. Nanotechnology. 29, 065301 (2018). Crossref
26. T. Y. Wang et al. J. Magn. Magn. Mater. 544, 168680 (2022). Crossref
27. A. Kaidatzis et al. J. Magn. Magn. Mater. 498, 166142 (2020). Crossref
28. J. Gräfe et al. Phys. Rev. B. 93, 014406 (2016). Crossref
29. M. Salaheldeen, V. Vega, A. Fernández, V. M. Prida. J. Magn. Magn. Mater. 491, 165572 (2019). Crossref
30. M. Krupinski et al. Nanotechnology. 28, 085302 (2017). Crossref
31. J. Xu, Y. Yang, H. Xiong, X. Lin. AIP Advances. 11, 085016 (2021). Crossref
32. S. Choudhury et al. Phys. Rev. Applied. 10, 064044 (2018). Crossref
33. S. Pan et al. Phys. Rev. B. 101, 014403 (2020). Crossref

Similar papers

Funding

1. Russian Science Foundation - 23-29-00108