The study of critical behavior on antiferromagnetic thin films by computer modeling

S.V. Belim, E.V. Trushnikova
Received: 09 July 2018; Revised: 20 August 2018; Accepted: 09 October 2018
This paper is written in Russian
Citation: S.V. Belim, E.V. Trushnikova. The study of critical behavior on antiferromagnetic thin films by computer modeling. Letters on Materials, 2018, 8(4) 440-442
BibTex   DOI: 10.22226/2410-3535-2018-4-440-442


Dependence of a Neel temperature TN for bulk phase transition on the exchange integrals relation RS at RSB=RS  for films with various thickness D.In article the study of the surface phase changes in the thin films described by the antiferromagnetic Ising model, by computer modeling is executed. The Metropolis algorithm is used. Modeling is executed at various values of exchange integrals relation on a surface and in bulk of films RS. The difference of exchange integral between the surface spins and the first subsurface layer RSB from volume value is considered. The limiting cases of the value RSB are considered. Two order parameters are used. The first order parameter defines an antiferromagnetic order in the bulk of system. It is calculated as chess magnetization of the spins located not on a surface. Its value is equal to the difference of magnet moments for two sublattices. For study of the surface phase transition, the second order parameter is entered. It is calculated as chess magnetization of the spins located on the free surface. For definition of transition temperature, bulk and surface Binder’s cummulants are used. The computer experiment for various values of film thickness from 4 to 12 layers is made. The relation of exchange integrals changed from 0.5 to 2.0. Temperatures of bulk and surface phase transition are identical at all relations of exchange integrals. Transition temperature grows at increase in the exchange integrals relation RS. Growth rate of transition temperature depends on thickness of a film and velue RSB. The difference of exchange integral between the surface layer and the first subsurface layer leads to more rapid growth of the transition temperature. For all values of exchange integrals there is a cross point for temperature curves at any thickness of a film.

References (20)

M. I. Kaganov. JETP. 35(3), 631 (1972).
K. Binder. Phase transition and critical phenomena (Eds. Domb C. And Lebowitz J. L.). NY Academ. Press. (1983) V. 3. P. 325 – 331.
H. W. Diehl. J. Mod. Phys. B. 11, 3503 (1997).
H. W. Diehl, M. Shpot. Nucl.Phys. B. 528, 595 (1998).
S. V. Belim. JETP. 103(4), 611 (2006).
S. V. Belim. JETP. 106(4), 773 (2008).
C. Rau, M. Robert. Phys. Rev. Lett. 58, 2714 (1987).
A. S. Kamzin, L. A. Grigor’ev. JETP Letters. 57(9), 552 (1993).
C.‑Yu. Lin, J.‑L. Li, Y.‑H. Hsieh, K.‑L. Ou, B. A. Jones. Phys. Rev. X. 2, 021012 (2012).
P. Ruiz-Diaz, T. R. Dasa, V. S. Stepanyuk. Phys. Rev. Lett. 110, 267203 (2013).
P. Ruiz-Diaz, V. S. Stepanyuk. J. Phys. D. Appl.Phys. 47, 105006 (2014).
O. O. Brovko, P. Ruiz-Dнaz, T. R. Dasa, V. S. Stepanyuk. J. Phys. Condens. Matter. 26, 093001 (2014).
I. Bernal-Villamil, S. Gallego Phys. Rev. B. 94, 075431 (2016).
D. P. Landau, K. Binder. Phys. Rev. B. 17, 2328 (1978).
C. Ruge, F. Wagner. Phys. Rev. B. 52, 4209 (1995).
M. Vendruscolo, M. Rovere, A. Fasolino. Europhys. Lett. 20, 547 (1992).
S. V. Belim, T. A. Koval’. Phys. Metals Metallogr. 115(9), 843 (2014).
S. V. Belim, T. A. Koval’. J. of Surface Investigation. 9(6), 1130 (2015).
S. V. Belim, E. V. Trushnikova. Journal of Physics: Conf. Series. 944, 012011 (2017).
M. Hamedoun, K. Bouslykhane, H. Bakrim, A. Hourmatallah, N. Benzakour, R. Masrour. J. Magn. Magn. Mater. 301, 22 (2006).