Discrete breathers of new type in monoatomic chains

G. Chechin, V. Lapina show affiliations and emails
Received 15 September 2018; Accepted 19 October 2018;
Citation: G. Chechin, V. Lapina. Discrete breathers of new type in monoatomic chains. Lett. Mater., 2018, 8(4) 458-462
BibTex   https://doi.org/10.22226/2410-3535-2018-4-458-462


Discrete breather in the strained Lennard-Jones chainIn strained monoatomic chains with Lennard-Jones interactions, we revealed a stable static non-homogeneous structure appearing as a result of a certain phase transition. Positions of individual particles in this structure form an exact arithmetic progression whose difference depends on the value of the strain. For N-particle chain, this structure is characterized by one long and N-1 short interatomic distances (bonds). In the vicinity of the static structure, we found discrete breathers of new type which essentially differ from the traditional breathers in the form of Sievers-Takeno and Page modes. It is well known that these modes possess some staggered structures and demonstrate exponential decay of the particle amplitudes from the core to their tails. In contrast to such properties, our breathers are characterised by smooth decay and amplitudes of the particles form approximately a decreasing arithmetic progression. Core of these breathers is located on two particles with long bond in static structure. Our breathers demonstrate soft type of nonlinearity (the frequency decreases with increasing of amplitudes) and they are stable dynamical objects for amplitudes up to 20%-30% of interparticle distance of the strained equidistant chain. For infinitely small amplitudes these breathers tend to the above described static non-homogeneous structure. We studied dependence of their properties on amplitude, strain and the number of particles in the chain. There exist a reason to suppose that the above static and dynamical structures can exist in real monoatomic chains consisting of carbon, boron, and other atoms.

References (17)

1. S. Flach, A. V. Gorbach. Phys. Rep. 467, 1 (2008).
2. S. Aubry. Phys. D. 216, 1 (2006).
3. S. V. Dmitriev, E. A. Korznikova, J. A. Baimova, M. G. Velarde. Phys. Usp. 59, 446 (2016).
4. S. Flach, A. V. Gorbach. Chaos. 15(1), 15112 (2015).
5. A. J. Sievers, S. Takeno. Phys. Rev. Lett. 61, 970 (1988).
6. J. B. Page. Phys. Rev. B. 41, 7835 (1990).
7. V. Artyukhov, M. Liu, B. Yakobson. Nano Lett. 14, 4224 (2014).
8. G. Casillas, A. Mayoral, M. Liu, V. Artyukhov, A. Poncea, B. Yakobson, et al. Carbon. 66, 436 (2014).
9. M. Liu, V. Artyukhov, H. Lee, F. Xu, B. Yakobson. ACS Nano. 7, 10075 (2013).
10. S. Cahangirov, M. Topsakal, S. Ciraci, Phys. Rev. B. 82(19), 195444 (2010).
11. A. Timoshevskii, S. Kotrechko, Y. Matviychuk. Phys. Rev. B. 91(24), 245434 (2015).
12. G. Chechin, D. Sizintsev, O. Usoltsev. Letters on materials. 6(2), 146 (2016). Crossref
13. G. Chechin, D. Sizintsev, O. Usoltsev. Letters on materials. 6(4), 309 (2016). Crossref
14. G. Chechin, D. Sizintsev, O. Usoltsev. Comp. Materials Science. 138C, 353 (2017).
15. B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, S. M. Watt. First Leaves: A Tutorial Introduction to MapleV. Springer-Verlag (1992) 253 p.
16. G. M. Chechin, G. S. Dzhelauhova, E. A. Mehonoshina. Phys. Rev. E. 74(3), 036608 (2006).
17. G. M. Chechin, I. P. Lobzenko. Letters on materials. 4(4), 226 (2014). Crossref

Cited by (4)

G.M. Chechin, V.S. Lapina. Physica E: Low-dimensional Systems and Nanostructures. 122, 114155 (2020). Crossref
G. Chechin, V. Lapina. Lett. Mater. 9(2), 151 (2019). Crossref
C. Cab, J. Medina, M.L. Casais-Molina, G. Canto, A. Tapia. Carbon. 150, 349 (2019). Crossref
G. Chechin, G. Bezuglova. Communications in Nonlinear Science and Numerical Simulation. 126, 107509 (2023). Crossref

Similar papers