Discrete breathers: possible effects on heat transport

D. Xiong, J. Zhang
Accepted: 06 January 2016
Citation: D. Xiong, J. Zhang. Discrete breathers: possible effects on heat transport. Letters on Materials, 2016, 6(1) 27-30
BibTex   DOI: 10.22226/2410-3535-2016-1-27-30

Abstract

Discrete breathers (DBs), also known as intrinsic localized modes, are spatially localized nonlinear vibrational modes in defected-free anharmonic lattices and expected to affect energy transfer process. However, whether DBs can contribute to thermal transport at finite temperature is still not very clear. In the present work, we briefly describe our recent results on the possible effects of DBs on heat transport. By employing two one-dimensional (1D) anharmonic lattice models with different phonon dispersions, we provide some numerical evidences to demonstrate that given the peculiar phonon dispersions along with nonlinearity, two kinds of DBs, i.e., the intra-band and extra-band ones, can exist in 1D lattices at finite temperature and thus contribute to thermal transport in different ways, i.e., the intra-band DBs can be scattering with phonons; while the extra-band DBs mainly localize the system energies, thus both tend to limit the heat transport in the thermodynamic limit. Our results here suggest that different peculiar phonon dispersions along with nonlinearity can enable us to excite different types of DBs, which then affect the heat transport process in different ways. These results may provide useful information for establishing the connection between the macroscopic heat transport process and the underlying DBs dynamics in general 1D nonlinear systems with various phonon dispersions.

References (22)

1.
S. Flach, A. V. Gorbach. Phys. Rep. 467, 1 (2008).
2.
S. Flach, C. R. Willis. Phys. Rep. 295, 181 (1998).
3.
S. V. Dmitriev, A. P. Chetverikov, M. G. Velarde. Phys. Status. Solidi B 252, 1682 (2015).
4.
A. J. Sievers, S. Takeno. Phys. Rev. Lett. 61, 970 (1988).
5.
J. B. Page. Phys. Rev. B 41, 7835 (1990).
6.
R. S. MacKay, S. Aubry. Nonlinearity 7, 1623 (1994).
7.
N. K. Voulgarakis, G. Kalosakas, A. R. Bishop, G. P. Tsironis. Phys. Rev. B 64, 020301 (R) (2001).
8.
G. Kalosakas, A. R. Bishop, A. P. Shreve. Phys. Rev. B 66, 094303 (2002).
9.
M. E. Manley, M. Yethiraj, H. Sinn, H. M. Volz, A. Alatas, J. C. Lashley, W. L. Hults, G. H. Lander, J. L. Smith. Phys. Rev. Lett. 96, 125501 (2006).
10.
M. E. Manley, J. R. Jeffries, H. Lee, N. P. Butch, A. Zabalegui, D. L. Abernathy. Phys. Rev. B 89, 224106 (2014).
11.
B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, W. Z. Wang, M. I. Salkola. Phys. Rev. Lett. 82, 3288 (1999).
12.
L. Z. Khadeeva, S. V. Dmitriev, and Yu. S. Kivshar. JETP Lett. 94, 539 (2011).
13.
M. V. Ivanchenko, O. I. Kanakov, V. D. Shalfeev, S. Flach. Physica D 198, 120 (2004).
14.
D. Xiong, J. Wang, Y. Zhang, H. Zhao. Phys. Rev. E 85, 020102 (R) (2012).
15.
D. Xiong, Y. Zhang, H. Zhao. Phys. Rev. E 88, 052128 (2013).
16.
D. Xiong, Y. Zhang, H. Zhao. Phys. Rev. E 90, 022117 (2014).
17.
G. P. Tsironis, A. R. Bishop, A. V. Savin, A. V. Zolotaryuk. Phys. Rev. E 60, 6610 (1999).
18.
S. Nose. J. Chem. Phys. 81, 511 (1984); W. G. Hoover. Phys. Rev. A 31, 1695 (1985).
19.
G. P. Tsironis, S. Aubry. Phys. Rev. Lett. 77, 5225 (1996).
20.
S. Flach, A. Gorbach. Chaos 15, 015112 (2005).
21.
It has been realized that in 1D momentum-conserving systems, usually the heat conductivity follows a power law with the system size L as Lα; see the following reviews: S. Lepri, R. Livi, A. Politi. Phys. Rep. 377, 1 (2003); A. Dhar. Adv. Phys. 57, 457 (2008).
22.
F. Müller-Plathe. J. Chem. Phys. 106, 6082 (1997) .

Cited by (1)

1.
Захаров П.В., Старостенков М.Д., Ерёмин А.М., Фундаментальные проблемы современного материаловедения 13(2), 223-229 (2016).