Quantum tunneling in gap discrete breathers

V.I. Dubinko1
1NSC KIPT
Abstract
In many-body nonlinear systems, a special kind of lattice vibrations, namely, discrete breathers (DBs) can be excited ei-ther thermally or by external triggering, in which the amplitude of atomic oscillations greatly exceeds that of harmonic oscillations (phonons). Coherency and persistence of large atomic oscillations in DBs may have drastic effect on quan-tum tunneling due to correlation effects discovered by Schrödinger and Robertson in 1930 and applied to the tunneling problem by Dodonov et al (1980) and Vysotskii et al (2010). In the present paper, it is argued that DBs present the most natural and efficient way to produce correlation effects due to time-periodic modulation of the potential well (or the Cou-lomb barrier) width and hence to act as breather ‘nano-colliders’ (BNC) triggering low energy nuclear reactions (LENR) in solids. In particular, due to the large mass difference between H/D and the metal atoms, there is a gap in phonon spec-trum of metal-hydride/deuteride crystals, in which so called ‘gap DBs’ arise in the H/D sub-lattice resulting in time-periodic modulation of spacing between adjacent H/D and metal atoms. Tunneling probability for deuterium fusion in ‘gap DBs’ is shown to increase drastically with increasing number of oscillations resulting in the observed LENR rate under heavy water electrolysis.
Received: 31 March 2015   Accepted: 15 April 2015
Views: 1245   Downloads: 134
References
1.
M. Fleischmann, S. Pons, M. Hawkins, J. Electroanal. Chem. 261, 301—308 (1989).
2.
M. McKubre, F. Tanzella, P. Hagelstein, K. Mullican, M. Trevithick. In: Tenth International Conference on Cold Fusion. MA: LENR-CANR.org.. Cambridge (2003) 1—13 p.
3.
E. K. Storms. The science of low energy nuclear reaction, World Scientific. Singapore (2007) 312 p.
4.
A. G. Parkhomov. International Journal of Unconventional Science. 7 (3), 68—72 (2015).
5.
H. J. Assenbaum, K. Langanke C. Rolfs. Z. Phys. A 327, 461—468 (1987).
6.
J. Kasagi. Screening In: ICCF-14 International Conference on Condensed Matter Nuclear Science (2008).
7.
E. Schrödinger. Ber. Kgl. Akad. Wiss. Berlin (1930) 296—303 p.
8.
H. P. Robertson. Phys. Rev. 34, 163—164 (1930).
9.
V. V. Dodonov, V. I. Man’ko. Phys. Lett. A 79 (2 / 3), 150—152 (1980).
10.
V. I. Vysotskii, S. V. Adamenko. J. Tech. Phys. 55, 613—621 (2010).
11.
V. I. Vysotskii, M. V. Vysotskyy, S. V. Adamenko. J. Exp. Theor. Phys. 141, 276—287 (2012).
12.
V. I. Vysotskii, S. V. Adamenko, M. V. Vysotskyy. J. Exp. Theor. Phys. 142, 627—643 (2012).
13.
V. I. Vysotskii, M. V. Vysotskyy. Eur. Phys. J. A (2013). DOI 10.1140 / epja / i2013‑13099‑2
14.
A. J. Sievers and S. Takeno, Phys. Rev. Lett. 61, 970—973 (1988).
15.
S. Flach, A. V. Gorbach, Phys. Rep. 467, 1—116, (2008).
16.
V. Hizhnyakov, D. Nevedrov, A. J. Sievers. Physica. B. 316—317, 132—135 (2002).
17.
M. E. Manley,A. J. Sievers, J. W. Lynn, S. A. Kiselev, N. I. Agladze, Y. Chen, A. Llobet, A. Alatas. Phys. Rev. B 79, 134304‑1‑5 (2009).
18.
M. E. Manley. Acta Materialia. 58, 2926—2935 (2010).
19.
L. Z. Khadeeva, S. V. Dmitriev. Phys. Rev. B 81, 214306‑1‑8 (2010).
20.
AA. Kistanov, S. V. Dmitriev. Phys. Solid State. 54, 1648—1651 (2012).
21.
L. Z. Khadeeva, S. V. Dmitriev. Phys. Rev. B 84, 144304‑1‑8 (2011).
22.
S. V. Dmitriev, A. P Chetverikov, M. G Velarde. Physica status solidi. (b), 1—5 (2015). DOI: 10.1002 / pssb.201451673
23.
G. M. Chechin, G. S. Dzhelauhova. J. Sound and Vibration. 322, 490—512 (2009).
24.
M. Haas, V. Hizhnyakov, A. Shelkan, M. Klopov, A. J. Sievers. Phys. Rev. B 84, 14430‑1‑8 (2011).
25.
D. Terentyev, A. Dubinko, V. Dubinko, S. Dmitriev, E. Zhurkin, M. Sorokin. Interaction of discrete breathers with primary lattice defects in bcc Fe. Modelling Simul. Mater. Sci. Eng., to be published.
26.
F. Piazza, Y. H. Sanejouand. Phys. Biol. 5, 026001‑1‑14 (2008).
27.
V. I. Dubinko, P. A. Selyshchev, and J. F. R. Archilla, Phys. Rev. E 83 (4) 124—126 (2011). DOI: 10.1103 / PhysRevE.83.041124
28.
V. I. Dubinko, F. M. Russell. J. Nuclear Materials. 419, 378—385 (2011).
29.
V. I. Dubinko, A. V. Dubinko. Nuclear Inst. and Methods in Physics Research. B 303, 133—135 (2013).
30.
V. I. Dubinko, F. Piazza. Letters on Materials. 4 (4), 273—278 (2014).
31.
V. I. Dubinko. J. Condensed Matter Nucl. Sci. 14, 87—107 (2014).
32.
P. Hanggi, P. Talkner, M. Borkovec. Rev. Mod. Phys. 62, 251—341 (1990).
33.
J. M. Rowe, J. J. Rush, H. G. Smith, M. Mostoller, H. E. Flotow. Phys. Rev. Lett. 33, 1297—1300 (1974).
34.
I. Errea, M. Calandra1, F. Mauri, Phys. Rev. Lett. 111, 177002‑1‑5 (2013).
35.
S. Kanagaprabha, A. Meenaatci, R. Rajeswarapalanichamy, K. Iyakutti. WJST. 9 (2), 1—12 (2012).
36.
P. V. Zakharov, M. D. Starostenkov, S. V. Dmitriev, N. N. Medvedev, A. M. Eryomin. Modeling the interaction of discrete breathers of various types in nanowires of crystal Pt3Al. JETP, to be published.
37.
A. Rahman, K. SkoId, G. Pelizarri, S. K. Sinha, H. Flotow. Phys. Rev. B 14, 3630—3634 (1976).
38.
N. N. Medvedev, M. D. Starostenkov, P. V. Zakharov, O. V. Pozhydaeva. J. Tech. Phys. Letters. 37, 7—15 (2011).
39.
P. L. Hagelstein, D. Letts, D. Cravens. J. Condensed Matter Nucl. Sci. 3, 59—76 (2010).
40.
H. G. Schimmel, M. R. Johnson, G. J. Kearley, A. J. Ramirez-Cuesta, J. Huot, F. M. Mulder, J. Alloys and Compounds. 393, 1—4 (2005).
41.
H. Zhang, J. F. Douglas. Soft Matter. 9, 1266—1280 (2013).
Cited by
1.
Dubinko V.I., Laptev D.V., Письма о материалах 6(1 (21)), 16-21 (2016).