On the role of disorder in catalysis driven by discrete breathers

V.I. Dubinko1, F. Piazza2
1National Science Center Kharkov Institute of Physics and Technology, Kharkov, 61108, Ukraine
2Université d’Orléans and Centre de Biophysique Moléculaire (CBM-CNRS), Rue Charles Sadron, 45071 Orléans Cedex, France
Abstract
A new mechanism of catalysis is discussed, which is based on the rate-promoting effect of large-amplitude anharmonic lattice vibrations, a.k.a. intrinsic localized modes or ‘discrete breathers’ (DBs), which can excite atoms at specific ‘active sites’ rather strongly, giving them energy far exceeding the energy of thermal vibrations for hundreds of oscillation periods. The DB-induced modulation of activation energies (free energy barriers between reactants and products) results in a drastic amplification of the reaction rates, which can be described by a simple analytical expression in the adiabatic limit. The striking site selectiveness of DB excitation dynamics in the presence of spatial (quenched) disorder makes these nonlinear vibrations viable candidates to play the role of ‘active modes’ in the catalytic process in various physical, chemical and biological systems.
Received: 15 December 2014   Accepted: 30 December 2014
Views: 422   Downloads: 75
References
1.
Ertl G. Knozinger, H. Schuth, F. Weitkamp (eds).Handbook of Heterogeneous Catalysis 2nd edn, WileyVCH.(2008).
2.
R. S. Swathi, K.L. Sebastian. Resonance. 13(6), 548—560(2008).
3.
V.I.  Dubinko, P.A.  Selyshchev, J.F.  R.  Archilla.Phys.Rev. E83, 4 (2011).
4.
V.I. Dubinko, A.V. Dubinko. Nuclear Inst. and Methodsin Physics Research. B303, 133 (2013).
5.
V.  Dubinko, R.  Shapovalov. Theory of a quodon gas.With application to precipitation kinetics in solids underirradiation. Springer Int. Publ., Switzerland (2014).
6.
A.J. Sievers and S. Takeno, Phys.Rev. Lett. 61, 970 (1988).
7.
V. Hizhnyakov, D. Nevedrov, A.J. Sievers. Physica B316—317, 132 (2002).
8.
F. Piazza, S. Lepri, R. Livi. Chaos. 13, 637 (2003).
9.
S. Flach, A.V. Gorbach. Phys. Rep. 467, 1 (2008).
10.
M.E. Manley. Acta Materialia. 58, 2926 (2010).
11.
L.Z.  Khadeeva, S.V.  Dmitriev. Phys.Rev.  B81, 214306(2010).
12.
A.A. Kistanov, S.V. Dmitriev. Phys. Solid State. 54, 1648(2012).
13.
L.Z.  Khadeeva, S.V.  Dmitriev. Phys.Rev.  B84, 144304(2011).
14.
G.M. Chechin, S.V. Dmitriev, I.P. Lobzenko,D. S. Ryabov. Phys. Rev. B90, 045432 (2014).
15.
N.K.  Voulgarakis, G.  Hadjisavvas, P.C.  Kelires,G.P. Tsironis. Phys.Rev. B69, 113201 (2004).
16.
M.  Haas, V.  Hizhnyakov, A.  Shelkan, M.  Klopov,A.J. Sievers. Phys.Rev. B84, 14430 (2011).
17.
A. A. Kistanov, S. V. Dmitriev, A. P. Chetverikov, M. G.Velarde. Eur. Phys. J. B87, 211 (2014).
18.
V.I. Dubinko, F.M. Russell. J. Nuclear Materials. 419, 378(2011).
19.
F. Piazza, Y.H. Sanejouand. Phys. Biol. 5, 026001 (2008).
20.
J.F.  R.  Archilla, J.  Cuevas, M.D.  Alba, M.  Naranjo,J.M. Trillo. J. Phys. Chem. B110, 24112 (2006).
21.
S.  Luccioli, A.  Imparato, S.  Lepri, F.  Piazza, A.  Torcini.Phys. Biol. 8, 046008 (2011).
22.
F.  Tama, Y.H.  Sanejouand. Protein Engineering Designand Selection. 14(1), 1—6 (2001).
23.
C.T.  Porter, G.J.  Bartlett, J.M.  Thornton. Nucl.Ac.  Res.32, D129 — D133 (2004).
24.
S.  Sacquin-Mora, E.  Laforet, R.  Lavery. Proteins. 67(2),350—359 (2007).
25.
F.  Piazza and Y.-H.  Sanejouand. Physical Biology. 6,046014 (2009).
26.
E.A. Sitnitsky. Physica. A 371 (2), 481 (2006).
27.
P. Hanggi, P. Talkner, M. Borkovec. Rev.Mod. Phys. 62,251 (1990).
28.
P. Jung. Phys. Reports. 234, 175 (1993).
29.
H. Zhang, J.F. Douglas. Soft Matter. 9, 1266 (2013).
30.
V.I.  Dubinko. J.  Condensed Matter Nucl. Sci. 14, 87(2014) .
Cited by
1.
Захаров П.В., Старостенков М.Д., Эволюция дефектных структур в конденсированных средах, 146-147 (2016).
2.
Dubinko V.I., Письма о материалах 4(4 (16)), 283-290 (2014).
3.
Laptev D.V., Письма о материалах 6(1 (21)), 34-38 (2016).
4.
Захаров П.В., Еремин А.М., Чередниченко А.И., учебное пособие / Бийск, 2016. (2016).