Discrete breathers properties obtained from ab initio calculations in graphene and graphane

Accepted: 14 March 2016
Citation: I.P. Lobzenko. Discrete breathers properties obtained from ab initio calculations in graphene and graphane. Lett. Mater., 2016, 6(1) 73-76
BibTex   https://doi.org/10.22226/2410-3535-2016-1-73-76


The density functional method was used for the simulation of discrete breathers in graphane (fully hydrogenated graphene) and strained graphene. It is demonstrated that breathers can exist with frequencies lying in the gap of the phonon spectrum of both systems. The gap in graphane is a consequence of high mass difference between carbon and hydrogen atoms, while in graphene the gap is induced by uniaxial tension of carbon layer in the “zigzag” direction (axes X). Breather core atoms in graphane are moving along Z direction which is perpendicular to the carbon sheet. In graphene discrete breathers are polarized in the “armchair” direction (axis Y). In both systems breathers are highly localized dynamical objects. The frequency on amplitude dependence found for breathers possess soft nonlinearity type. In contrast to the works of other authors deal with discrete breathers in graphene by means of classical molecular dynamics, in our research using ab initio calculations there haven’t been found discrete breathers with soft nonlinearity type. It is also important that we haven’t found any breathers polarized in the “armchair” direction in graphene under the uniaxial strain in the same direction. The results are of fundamental importance, as far as for discrete breathers in crystals molecular dynamics calculations based on empirical potentials should be revised by means of more reliable methods.

References (40)

1. A. A. Ovchinnikov. Sov. Phys. JETP 24 (2), 394 (1969).
2. A. S. Dolgov. Sov. Phys. Solid State 28 (3), 507 (1986).
3. A. Sievers and S. Takeno. Phys. Rev. Lett. 61, 970 (1988).
4. S. Flach and A. Gorbach. Phys. Rep. 467, 1 (2007).
5. P. Binder, D. Abraimov, A. V. Ustinov et al. Phys. Rev. Lett. 84, 745 (2000).
6. R. Morandotti, U. Peschel, J. S. Aitchison et al. Phys. Rev. Lett. 83, 2726 (1999).
7. M. Sato, B. E. Hubbard and A. Sievers. Rev. Mod. Phys. 78, 137 (2006).
8. N. Boechler, G. Theocharis, S. Job et al. Phys. Rev. Lett. 104, 244302 (2010).
9. B. I. Swanson, J. A. Brozik, S. P. Love et al. Phys. Rev. Lett. 82, 3288 (1999).
10. G. Kalosakas, A. R. Bishop and A. P. Shreve. Phys. Rev. B 66, 094303 (2002).
11. D. K. Campbell, S. Flach and Y. S. Kivshar. Phys. Today 57, 43 (2004).
12. M. E. Manley, A. Alatas, F. Trouw et al. Phys. Rev. B 77, 214305 (2008).
13. M. E. Manley, A. J. Sievers, J. W. Lynn et al. Phys. Rev. B 79, 134304 (2009).
14. M. Kempa, P. Ondrejkovic, P. Bourges et al. J. Phys.: Condens. Matter 25, 055403 (2013).
15. A. J. Sievers, M. Sato, J. B. Page and T. Rossler. Phys. Rev. B 88, 104305 (2013).
16. S. A. Kiselev and A. J. Sievers. Phys. Rev. B 55, 5755 (1997).
17. L. Z. Khadeeva and S. V. Dmitriev. Phys. Rev. B 81, 214306 (2010).
18. Yu. A. Baimova, S. V. Dmitriev, A. A. Kistanov, and A. I. Potekaev. Russ. Phys. J. 56 (2), 180 (2013).
19. M. Haas, V. Hizhnyakov, A. Shelkan et al. Phys. Rev. B 84, 144303 (2011).
20. R. T. Murzaev, A. A. Kistanov, V. I. Dubinko, D. A. Terentyev, S. V. Dmitriev. Comput. Mater. Sci. 98, 88 (2015).
21. N. K. Voulgarakis, G. Hadjisavvas, P. C. Kelires, and G. P. Tsironis. Phys. Rev. B 69, 113201 (2004).
22. N. N. Medvedev, M. D. Starostenkov and M. E. Manley. J. Appl. Phys. 114, 213506 (2013).
23. L. Z. Khadeeva, S. V. Dmitriev, and Yu. S. Kivshar’. JETP Lett. 97 (7), 539 (2011).
24. E. A. Korznikova, J. A. Baimova and S. V. Dmitriev. Europhys. Lett. 102, 60004 (2013).
25. J. A. Baimova, S. V. Dmitriev and K. Zhou. Europhys. Lett. 100, 36005 (2012).
26. N. K. Voulgarakis, G. Hadjisavvas, P. C. Kelires and G. P. Tsironis. Phys. Rev. B 69, 113201 (2004).
27. A. R. Bishop, A. Bussmann-Holder, S. Kamba, and M. Maglione. Phys. Rev. B 81, 064106 (2010);.
28. J. Macutkevic, J. Banys, A. Bussmann-Holder, and A. R. Bishop. Phys. Rev. B 83, 184301 (2011).
29. W. Kohn. Nobel Lecture. Rev. Mod. Phys. 71 (5), 1253 (1999).
30. X. Gonze, et al. Comput. Phys. Commun. 180, 2582 (2009).
31. www.abinit.org.
32. P. Hohenberg and W. Kohn. Phys. Rev. 136, B864 (1964);.
33. W. Kohn and L. J. Sham. Phys. Rev. 140, A1133 (1965).
34. G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko and D. S. Ryabov, Phys. Rev. B 90, 045432 (2014).
35. Y. Yamayose, Y. Kinoshita, Y. Doi, A. Nakatani, and T. Kitamura. Europhys. Lett. 80, 40008 (2007).
36. Y. Doi and A. Nakatani. J. Solid Mech. Mater. Eng. 6, 71 (2012).
37. D. W. Brenner. Phys. Rev. B: Condens. Matter 42, 9458 (1990).
38. J. L. Marin and S. Aubry. Nonlinearity 9, 1501 (1996).
39. G. M. Chechin, G. S. Dzhelauhova, and E. A. Mehonoshina. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 74, 036608 (2006).
40. G. M. Chechin and G. S. Dzhelauhova. J. Sound Vib. 322, 490 (2009).

Cited by (5)

J.A. Baimova, R.T. Murzaev, A.I. Rudskoy. Physics Letters A. 381(36), 3049 (2017). Crossref
J. Baimova, I. Evazzade, L. Kalyakin, S. Dmitriev, K. Zhou. IOP Conf. Ser.: Mater. Sci. Eng. 447, 012011 (2018). Crossref
I. Evazzade, M. Roknabadi, M. Behdani, F. Moosavi, D. Xiong, K. Zhou, Sergey V. Dmitriev. Eur. Phys. J. B. 91(7) (2018). Crossref
K.A. Krylova, J.A. Baimova, R.T. Murzaev, R.R. Mulyukov. Physics Letters A. 383(14), 1583 (2019). Crossref
Sergey V. Dmitriev, Julia A. Baimova, Elena A. Korznikova, Alexander P. Chetverikov. Understanding Complex Systems: Nonlinear Systems, Vol. 2, Chapter 7, p.175 (2018). Crossref

Similar papers