Modelling of energy transfer induced by longitudinal shaking of one atom row in carbon nanoribbons

I.P. Lobzenko1,2, I. Evazzade3, M.R. Roknabadi3, R.I. Makhmutova4, S.V. Dmitriev2,5
1Institute of Molecule and Crystal Physics, Ufa Scientific Center, Russian Academy of Sciences, Ufa, 450054 Russia
2Institute for Metals Superplasticity Problems, RAS, Khalturina 39, 450001, Ufa, Russia
3Department of Physics, Ferdowsi University of Mashhad, Vakilabad Highway, 9177948974, Mashhad, Iran
4Bashkir State Agrarian University, 50 let Oktyabrya 34, 450001, Ufa, Russia
5Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya St., 195251, St. Petersburg, Russia
Abstract
The energy transfer affected by the presence of discrete breathers (DB) in the carbon nanoribbons is investigated by means of molecular dynamics. The nanoribbons we consider are long in the “armchair” direction and narrow in “zigzag” direction graphene planes. The system is treated under the strain with deformation components being εxx = 0.35 (which coincides with zigzag direction), εyy = −0.1 (which coincides with armchair direction). Such strain applied to graphene leads to the existence of the gap in phonon spectrum and therefore to the possibility of exciting discrete breathers with frequencies within the gap. The energy transfer to the system is induced by shaking of the central zigzag chain (the carbon chain of atoms prolate in x direction). The shaking is implemented by displacing each atom of the chain according to the sinusoidal function of time. It is shown that for the frequencies of shaking lying in the gap of graphene phonon spectrum there is non negligible energy transfer to the ribbon. We attribute this phenomenon with the excitation of two discrete breathers (one at each side of the shaking chain). For the frequencies of shaking being lower than the discrete breather resonant frequency the DB prevents energy transfer to the system, while for higher frequencies of shaking the DB promotes the energy spreading.
Accepted: 02 June 2016
Views: 121   Downloads: 32
References
1.
A. J. Sievers and S. Takeno, Phys. Rev. Lett. 61, 970 (1988).
2.
S. Flach and A. V. Gorbach, Physics Reports 467, 1 (2008).
3.
D. K. Campbell, S. Flach, and Y. S. Kivshar, Physics Today 57, 43 (2004).
4.
P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y. Zolotaryuk, Phys. Rev. Lett. 84, 745 (2000).
5.
R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, Phys. Rev. Lett. 83, 2726 (1999).
6.
M. Sato, B. E. Hubbard, and A. J. Sievers, Rev. Mod. Phys. 78, 137 (2006).
7.
J. B. Page, Phys. Rev. B 41, 7835 (1990).
8.
G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko, and D. S. Ryabov, Phys. Rev. B 90, 045432 (2014).
9.
J. Marin and S. Aubry, Nonlinearity 9, 1501 (1996).
10.
G. M. Chechin, G. S. Dzhelauhova, and E. A. Mehonoshina, Phys. Rev. E 74, 036608 (2006).
11.
G. M. Chechin and G. S. Dzhelauhova, Journal of Sound Vibration 322, 490 (2009).
12.
S. V. Dmitriev, E. A. Korznikova, J. A. Baimova, and M. G. Velarde, Uspekhi Fizicheskikh Nauk 186, 471 (2016).
13.
B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, W.-Z. Wang, and M. I. Salkola, Phys. Rev. Lett. 82, 3288 (1999).
14.
G. Kalosakas, A. R. Bishop, and A. P. Shreve, Phys. Rev. B 66, 094303 (2002).
15.
M. Manley, M. Yethiraj, H. Sinn, H. Volz, A. Alatas, J. Lashley, W. Hults, G. Lander, and J. Smith, Physical review letters 96, 125501 (2006).
16.
M. E. Manley, J. W. Lynn, Y. Chen, and G. H. Lander, Physical Review B 77, 052301 (2008).
17.
M. Manley, A. Sievers, J. Lynn, S. Kiselev, N. Agladze, Y. Chen, A. Llobet, and A. Alatas, Physical Review B 79, 134304 (2009).
18.
A. J. Sievers, M. Sato, J. B. Page, and T. Rössler, Phys. Rev. B 88, 104305 (2013).
19.
S. A. Kiselev and A. J. Sievers, Phys. Rev. B 55, 5755 (1997).
20.
L. Z. Khadeeva and S. V. Dmitriev, Phys. Rev. B 81, 214306 (2010).
21.
M. Haas, V. Hizhnyakov, A. Shelkan, M. Klopov, and A. J. Sievers, Phys. Rev. B 84, 144303 (2011).
22.
A. A. Kistanov, Y. A. Baimova, and S. V. Dmitriev, Tech. Phys. Lett. 38, 676 (2012).
23.
A. A. Kistanov and S. V. Dmitriev, Tech. Phys. Lett. 39, 618 (2013).
24.
A. A. Kistanov, S. V. Dmitriev, A. S. Semenov, V. I. Dubinko, and D. A. Terent’ev, Tech. Phys. Lett. 40, 657 (2014).
25.
A. A. Kistanov, R. T. Murzaev, S. V. Dmitriev, V. I. Dubinko, and V. V. Khizhnyakov, JETP Letters 99, 353 (2014).
26.
N. K. Voulgarakis, G. Hadjisavvas, P. C. Kelires, and G. P. Tsironis, Phys. Rev. B 69, 113201 (2004).
27.
J. A. Baimova and S. V. Dmitriev, Russian Physics Journal 58, 785 (2015).
28.
S. J. Stuart, A. B. Tutein, and J. A. Harrison, The Journal of Chemical Physics 112, 6472 (2000).
29.
L. Z. Khadeeva, S. V. Dmitriev, and Y. S. Kivshar’, JETP Lett., 94(7),539 (2011) .
30.
Y. Yamayose, Y. Kinoshita, Y. Doi, A. Nakatani, and T. Kitamura, EPL (Europhysics Letters) 80, 40008 (2007).
31.
Y. Doi and A. Nakatani, Journal of Solid Mechanics and Materials Engineering 6, 71 (2012).
32.
I. P. Lobzenko, G. M. Chechin, G. S. Bezuglova, Y. A. Baimova, E. A. Korznikova, and S. V. Dmitriev, Physics of the Solid State 58, 633 (2016).
33.
Y. S. K. A. V. Savin and B. Hu, Phys. Rev. B 82, 195422.
34.
D. W. Brenner, Phys. Rev. B 42, 9458 (1990).
35.
Y. A. Baimova, S. V. Dmitriev, A. V. Savin, and Y. S. Kivshar’, Physics of the Solid State 54, 866 (2012).
Cited by
1.
Старостенков М.Д., Демьянов Б.Ф., Захаров П.В., Медведев Н.Н., Полетаев Г.М., Черных Е.В., Чаплыгин П.А., Кулабухова Н.А., Яшин А.В., Чаплыгина А.А., Маркидонов А.В., Харьков А.М., Санников А.В., Семенов А.С., Лобзенко И.П., Кулаева Н.А., отчет о НИР  № 166 от 01.01.2014 (Алтайский государственный технический университет им. И.И. Ползунова) .
2.
Evazzade I., Roknabadi M.R., Lobzenko I.P., Korznikova E.A., Dmitriev S.V., Ovid'Ko I.A., Physical Review B: Condensed Matter and Materials Physics 95(3), 035423 (2017).
3.
Barani E., Lobzenko I.P., Korznikova E.A., Dmitriev S.V., Soboleva E.G., Zhou K., Marjaneh A.M., The European Physical Journal B - Condensed Matter and Complex Systems 90(3), 38 (2017).