Large-amplitude in-plane atomic vibrations in strained graphene monolayer: bushes of nonlinear normal modes

G. Chechin, D. Ryabov, S. Shcherbinin show affiliations and emails
Received 13 July 2017; Accepted 24 September 2017;
Citation: G. Chechin, D. Ryabov, S. Shcherbinin. Large-amplitude in-plane atomic vibrations in strained graphene monolayer: bushes of nonlinear normal modes. Lett. Mater., 2017, 7(4) 367-372
BibTex   https://doi.org/10.22226/2410-3535-2017-4-367-372

Abstract

In this paper, we study some low-dimensional bushes of nonlinear normal modes in graphene using ab initio calculations based on the density functional theory. The amplitude-frequency dependencies of one-dimensional bushes are found. The excitation transfer between nonlinear vibrational modes of different symmetry that belong to the same bush is investigated.Conventional normal modes are independent of each other in the framework of harmonic approximation. When small anharmonic terms in the Hamiltonian are taken into account, these dynamical objects are only approximate and one can speak about their interactions. In our previous works, the theory of bushes of nonlinear normal modes has been developed for dynamical systems with discrete symmetry groups. With the aid of this theory it is possible to find some exact solutions beyond the harmonic approximation. Each bush is an invariant manifold corresponding to a collection of m nonlinear normal modes, where m is the bush dimension. During the evolution of a given bush, this collection conserves, but amplitudes of the modes, entering the bush, change in time. Previously, we proved with the aid of group-theoretical methods, that in graphene under uniform strain (space symmetry group P6mm) there can exist 4 bushes with m = 1, 14 bushes with m = 2, 1 bush with m = 3, 6 bushes with m = 4, and etc. In this paper, we study some low-dimensional bushes in graphene using ab initio calculations based on the density functional theory. The amplitude-frequency dependencies of one-dimensional bushes are found. The excitation transfer between nonlinear vibrational modes of different symmetry that belong to the same bush is investigated.

References (25)

1. S. V. Dmitriev, E. A. Korznikova, J. A. Baimova, M. G. Velarde. Phys. Usp. 59, 446 (2016).
2. Y. Doi, A. Nakatani. Journal of Solid Mechanics and Materials Engineering 6 (1), 71 (2012).
3. E. Barani, I. P. Lobzenko, E. A. Korznikova, E. G. Soboleva, S. V. Dmitriev, K. Zhou, A. M. Marjaneh. Eur. Phys. J. B 90, 38 (2017).
4. I. P. Lobzenko, I. Evazzade, M. R. Roknabadi, R. I. Makhmutova, S. V. Dmitriev. Letters on materials, 6 (2), 152 - 155 (2016). Crossref
5. I. Evazzade, I. P. Lobzenko, E. A. Korznikova, I. A. Ovid›ko, M. R. Roknabadi, S. V. Dmitriev. Phys. Rev. B 95, 035423 (2017).
6. E. A. Korznikova, D. V. Bachurin, S. Y. Fomin, A. P. Chetverikov, S. V. Dmitriev. Eur. Phys. J. B. 90, 23 (2017).
7. V. P. Sakhnenko, G. M. Chechin. Dokl. Akad. Nauk 330, 308 (1993); V. P. Sakhnenko, G. M. Chechin. Phys. Dokl. 38, 219 (1993).
8. G. M. Chechin, V. P. Sakhnenko. Physica D 117, 43 (1998).
9. V. P. Sakhnenko, G. M. Chechin. Dokl. Akad. Nauk 338, 42 (1994); V. P. Sakhnenko, G. M. Chechin. Phys. Dokl. 39, 625 (1994).
10. G. Chechin, D. Sizintsev, O. Usoltsev. Letters on materials 6 (2), 146 - 151 (2016). Crossref
11. G. Chechin, D. Sizintsev, O. Usoltsev. Letters on materials 6 (4), 309 - 316 (2016). Crossref
12. G. Chechin, D. Sizintsev, O. Usoltsev. Comp. Materials Science 138C, 353 (2017).
13. G. M. Chechin, D. S. Ryabov, K. G. Zhukov. Physica D 203, 121 (2005).
14. G. M. Chechin, A. V. Gnezdilov, M. Yu. Zekhtser. Int. J. Non-Linear Mech. 38, 1451 (2003).
15. G. M. Chechin, K. G. Zhukov. Phys Rev E 73, 36216 (2006).
16. G. M. Chechin, D. S. Ryabov. Phys. Rev. E 69, 036202 - 1 (2004).
17. G. M. Chechin, S. A. Shcherbinin. Commun. in Nonlinear Sci. and Numer. Simulat. 22, 244 (2015).
18. G. M. Chechin, D. S. Ryabov, S. A. Shcherbinin. Phys. Rev. E 92, 012907 (2015).
19. G. S. Bezuglova, G. M. Chechin, P. P. Goncharov. Phys. Rev. E. 84, 036606 (2011).
20. G. M. Chechin, D. S. Ryabov, S. A. Shcherbinin. Letters on materials 6 (1), 9 - 15 (2016). Crossref
21. G. M. Chechin. Comput. Math. Appl. 17 (1-3), 255 (1989).
22. W. Kohn. Rev. Mod. Phys. 71, 1253 (1999).
23. P. Giannozzi et al. J. Phys.: Condens. Matter, 21, 395502 (2009).
24. S. V. Dmitriev, E. A. Korznikova, D. I. Bokij, K. Zhou. Physica Status Solidi B 253 (7), 1310 (2016).
25. E. A. Korznikova, S. Yu. Fomin, S. V. Dmitriev. JETP Letters, 4, 303 (2016).

Cited by (10)

1.
Elena A. Korznikova, Stepan A. Shcherbinin, Denis S. Ryabov, George M. Chechin, Evgeny G. Ekomasov, E. Barani, K. Zhou, Sergey V. Dmitriev. Phys. Status Solidi B. 256(1), 1800061 (2019). Crossref
2.
Olga V. Bachurina, Ramil T. Murzaev, Dmitry V. Bachurin. J. Micromech. Mol. Phys. 04(02), 1950001 (2019). Crossref
3.
G. Chechin, D. Ryabov, S. Shcherbinin. J. Micromech. Mol. Phys. 03(01n02), 1850002 (2018). Crossref
4.
K.A. Krylova, I.P. Lobzenko, A.S. Semenov, A.A. Kudreyko, S.V. Dmitriev. Computational Materials Science. 180, 109695 (2020). Crossref
5.
G. Chechin, D. Ryabov. Lett. Mater. 10(4), 523 (2020). Crossref
6.
Denis S. Ryabov, George M. Chechin, A. Upadhyaya, Elena A. Korznikova, Vladimir I. Dubinko, Sergey V. Dmitriev. Nonlinear Dyn. 102(4), 2793 (2020). Crossref
7.
Rita I. Babicheva, Alexander S. Semenov, Elvira G. Soboleva, Aleksey A. Kudreyko, K. Zhou, Sergey V. Dmitriev. Phys. Rev. E. 103(5) (2021). Crossref
8.
Rita I. Babicheva, Alexander S. Semenov, Stepan A. Shcherbinin, Elena A. Korznikova, Aleksey A. Kudreyko, P. Vivegananthan, K. Zhou, Sergey V. Dmitriev. Phys. Rev. E. 105(6) (2022). Crossref
9.
S.A. Shcherbinin, K.A. Krylova, G.M. Chechin, E.G. Soboleva, S.V. Dmitriev. Communications in Nonlinear Science and Numerical Simulation. 104, 106039 (2022). Crossref
10.
Alina Y. Morkina, Dmitry V. Bachurin, Sergey V. Dmitriev, Aleksander S. Semenov, Elena A. Korznikova. Materials. 15(16), 5597 (2022). Crossref

Similar papers