Temperature effect on graphene strength

A.M. Iskandarov, Y. Umeno, S.V. Dmitriev show affiliations and emails
Accepted: 26 October 2011
Citation: A.M. Iskandarov, Y. Umeno, S.V. Dmitriev.  Temperature effect on graphene strength. Lett. Mater., 2011, 1(3) 143-146
BibTex   https://doi.org/10.22226/2410-3535-2011-3-143-146


 The effect of temperature on the strength of strained graphene is studied by means of molecular dynamics simulations. Initially strained graphene is heated with constant temperature increase rate from 0 K up to the mechanical instability and fracture. Strong influence of the temperature increase rate on the critical temperature has been revealed, which is an expected effect in the simulations of fracture triggered by thermal fluctuations. For uniaxial tension along zigzag (armchair) direction the critical strain at room temperature is equal to 0,22 (0,19), while at zero temperature the critical strain is equal to 0,30 (0,23). Hydrostatic tension at zero temperature results in graphene fracture at strain of 0.23, while at room temperature at strain of 0.16.


1. C. Soldano, A. Mahmood, E. Dujardin, Carbon 48, 2127(2010).
2. N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J.van Wees, Nature 448, 571 (2007).
3. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P.Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I.Katsnelson, A.K.G. Heim, K.S. Novoselov, Science 323, 610 (2009).
4. J.O. Sofo, A.S. Chaudhari, G.D. Barber, Phys. Rev. B 75, 153401 (2007).
5. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M.Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T.Nguyen, R.S. Ruoff, Nature 442, 282 (2006).
6. T. Zhu, J. Li, Progr. Mater. Sci. 55, 710 (2010). X. Li, K.Maute, M.L. Dunn, R. Yang, Phys. Rev. B. 81, 245318(2010).
7. F.M.D. Pellegrino, G.G.N. Angilella, R. Pucci, Phys. Rev.B 81, 035411 (2010).
8. M. Huang, H. Yan, C. Chen, D. Song, T.F. Heinz, and J.Hone, PNAS 106, 7304 (2009).
9. R.M. Ribeiro, V.M. Pereira, N.M. R. Peres, P.R. Briddon, A.H. Castro Neto, New Journal of Physics 11, 115002(2009).
10. F. Liu, P. Ming, J. Li, Phys. Rev. B. 76, 064120 (2007).
11. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385(2008).
12. X. Wei, B. Fragneaud, C. A. Marianetti, J. W. Kysar, Phys.Rev. B. 80, 205407 (2009).
13. J.-W. Jiang, J-S. Wang, B. Li, Phys. Rev. B. 80, 113405(2009).
14. J.-W. Jiang, J.-S.Wang, B. Li, Phys. Rev. B. 81, 073405(2010).
15. E.Cadelano, P. L. Palla, S. Giordano, L. Colombo, PRL102, 235502 (2009).
16. A.V. Savin, Yu.S. Kivshar, Letters on Materials. 1(1), 3(2011) [Савин А. В., Кившарь Ю.С. Письма о матери-алах. 1(1), 3 (2011)].
17. S.V. Dmitriev, J.A. Baimova, A.V. Savin, Yu.S. KivsharJETP Letters. 93(10) 571 (2011).
18. S.V. Dmitriev, J.A. Baimova, A.V. Savin, Yu.S. Kivshar.Comp. Mater. Sci. (2011). Crossref
19. J.A. Baimova, A.V. Savin, Letters on Materials. 1(3), 171(2011). [Баимова Ю.А., Савин А. В. Письма о матери-алах. 1(3), 171 (2011)].
20. A.M. Iskandarov, S.V. Dmitriev, Y. Umeno, JSME (inpress) 2011.
21. D.W. Brenner, Phys. Rev. B 42, 9458 (1990).

Cited by (1)

E. A. Korznikova, J. A. Baimova, S. V. Dmitriev. Russ Phys J. 58(6), 808 (2015). Crossref