Numerical modeling of 3D discrete breathers in fcc Ni

I.P. Lobzenko, P.V. Lobzenko, A.M. Bayazitov, A.P. Chetverikov, R.I. Machmutova, A.A. Kistanov
Received: 02 November 2016; Accepted: 14 November 2016
This paper is written in Russian
Citation: I.P. Lobzenko, P.V. Lobzenko, A.M. Bayazitov, A.P. Chetverikov, R.I. Machmutova, A.A. Kistanov. Numerical modeling of 3D discrete breathers in fcc Ni. Letters on Materials, 2016, 6(4) 304-308
BibTex   DOI: 10.22226/2410-3535-2016-4-304-308

Abstract

Molecular dynamics study of discrete breathers in fcc Ni crystal is undertaken. The initial conditions for the excitation of breathers are constructed by imposing a spherically symmetric function, exponentially decreasing with the distance from the center of the sphere, on the delocalized vibrational normal mode, the frequency of which lies above the phonon spectrum of the crystal. This method allows to obtain a three-dimensional discrete breather of a new type, in the core of which the atoms oscillate like in the normal mode, and the amplitude of these oscillations decreases exponentially with distance from the center of the breather. A detailed discussion of the properties of the normal mode on which the breather is built is presented. It is shown that in the two extreme cases, constant volume and zero pressure, the mode shows hard type of non-linearity in a wide range of amplitudes, which ensures the hard type of the nonlinearity of the breather and its frequency lying above the phonon spectrum of the crystal. The spatial localization parameter of the breather is determined as the function of breather amplitude so that the breather life time is maximal. Found discrete breathers have relatively long lifetime of the order of 10 ps, which substantially exceeds the lifetime of thermal fluctuations.The proof of the existence of three-dimensional breathers in fcc Ni, presented in this paper, is an interesting and important result in the theory of discrete breathers.

References (30)

1.
S. Flach and A. Gorbach. Phys. Rep. 467, 1 (2007), Doi:http://dx.doi.org / 10.1016 / j.physrep.2008.05.002
2.
D. Campbell, S. Flach and Yu. Kivshar. Phys. Today 51 (1), 43 – 49 (2004),
3.
S. V. Dmitriev, E. A. Korznikova, J. A. Baimova, M. G. Velarde. Physics Uspekhi 186, 446 (2016), DOI: 10.3367 / UFNe.2016.02.037729 [С. В. Дмитриев, Е. А. Корзникова, Ю. А. Баимова, М. Г. Веларде. Успехи физических наук 186, 471 (2016), DOI: 10.3367 / UFNr.2016.02.037729]
4.
A. Sievers and S. Takeno. Phys. Rev. Lett. 61, 970 (1988), Doi:10.1103 / PhysRevLett.61.970
5.
B. I. Swanson, J. A. Brozik, S. P. Love et al., Phys. Rev. Lett. 82, 3288 (1999), Doi:http://dx.doi.org / 10.1103 / PhysRevLett.82.3288
6.
G. Kalosakas, A. R. Bishop and A. P. Shreve, Phys. Rev. B 66, 094303 (2002), Doi:http://dx.doi.org / 10.1103 / PhysRevB.66.094303
7.
M. E. Manley, A. Alatas, F. Trouw et al., Phys. Rev. B 77, 214305 (2008), Doi:http://dx.doi.org / 10.1103 / PhysRevB.77.214305
8.
M. E. Manley, A. J. Sievers, J. W. Lynn et al., Phys. Rev. B 79, 134304 (2009), Doi:http://dx.doi.org / 10.1103 / PhysRevB.79.134304
9.
M. Kempa, P. Ondrejkovic, P. Bourges et al., J. Phys.: Condens. Matter 25, 055403 (2013).
10.
A. J. Sievers, M. Sato, J. B. Page and T. Rossler, Phys. Rev. B 88, 104305 (2013), Doi:http://dx.doi.org / 10.1103 / PhysRevB.88.104305
11.
S. A. Kiselev and A. J. Sievers. Phys. Rev. B 55, 5755 (1997), Doi:http://dx.doi.org / 10.1103 / PhysRevB.55.5755
12.
L. Z. Khadeeva and S. V. Dmitriev. Phys. Rev. B 81, 214306 (2010), Doi:http://dx.doi.org / 10.1103 / PhysRevB.81.214306
13.
Yu. A. Baimova, S. V. Dmitriev, A. A. Kistanov, and A. I. Potekaev. Russ. Phys. J. 56 (2), 180 (2013).
14.
M. Haas, V. Hizhnyakov, A. Shelkan, M. Klopov, and A. J. Sievers Phys. Rev. B 84, 144303 (2011), Doi:http://dx.doi.org / 10.1103 / PhysRevB.84.144303
15.
R. T. Murzaev, A. A. Kistanov, V. I. Dubinko, D. A. Terentyev, S. V. Dmitriev. Comput. Mater. Sci. 98, 88 (2015).
16.
N. K. Voulgarakis, G. Hadjisavvas, P. C. Kelires, and G. P. Tsironis. Phys. Rev. B 69, 113201 (2004), Doi:http://dx.doi.org / 10.1103 / PhysRevB.69.113201
17.
N. N. Medvedev, M. D. Starostenkov and M. E. Manley. J. Appl. Phys. 114, 213506 (2013), Doi:http://dx.doi.org / 10.1063 / 1.4837598
18.
L. Z. Khadeeva, S. V. Dmitriev, and Yu. S. Kivshar’. JETP Lett. 97 (7), 539 (2011), Doi: 10.1134 / S0021364011190106
19.
E. A. Korznikova, J. A. Baimova and S. V. Dmitriev. Europhys. Lett. 102, 60004 (2013).
20.
J. A. Baimova, S. V. Dmitriev and K. Zhou. Europhys. Lett. 100, 36005 (2012).
21.
B. Liu, J. A. Baimova, S. V. Dmitriev et al., J. Phys. D: Appl. Phys. 46, 305302 (2013).
22.
G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko and D. S. Ryabov, Phys. Rev. B 90, 045432 (2014), Doi:10.1103 / PhysRevB.90.045432
23.
I. P. Lobzenko, G. M. Chechin, G. S. Bezuglova, Yu. A. Baimova, E. A. Korznikova, S. V. Dmitriev. Phys. Solid State. 58 (3), 633 (2016), Doi:10.1134 / S1063783416030203
24.
G. M. Chechin, I. P. Lobzenko Letters on Materials 4 (4), pp. 226 – 229 (2014), 10.22226 / 2410‑3535‑2014‑4‑226‑229
25.
S. V. Dmitriev, L. Z. Khadeeva. Phys. Solid State. 53 (7), 1425 – 1430 (2011), Doi:10.1134 / S1063783411070079
26.
E. A. Korznikova, S. Yu. Fomin, E. G. Soboleva, S. V. Dmitriev, JETP Letters 103 (4), 277 – 287 (2006), DOI: 10.1134 / S0021364016040081 [Е. А. Корзникова, С. Ю. Фомин, Э. Г. Соболева, С. В. Дмитриев, Письма в ЖЭТФ, 103 (4), 303 – 308 (2016)]
27.
S. Plimpton. J Comp. Phys., 117 (1) 1 – 19 (1995), Doi:10.1006 / jcph.1995.1039
28.
S. M. Foiles, Phys Rev B 32, 7685 (1985), Doi:http://dx.doi.org / 10.1103 / PhysRevB.32.3409
29.
G. M. Chechin, G. S. Dzhelauhova and E. A. Mehonoshina, Phys. Rev. E 74, 036608 (2006).
30.
G. M. Chechin, G. S. Dzhelauhova, J. Sound Vib. 322, 490 (2009) .

Cited by (1)

1.
Barani E., Lobzenko I.P., Korznikova E.A., Dmitriev S.V., Soboleva E.G., Zhou K., Marjaneh A.M., The European Physical Journal B - Condensed Matter and Complex Systems 90(3), 38 (2017).