Numerical modeling of 3D discrete breathers in fcc Ni

I.P. Lobzenko, P.V. Lobzenko, A.M. Bayazitov, A.P. Chetverikov, R.I. Machmutova, A.A. Kistanov show affiliations and emails
Received: 02 November 2016; Accepted: 14 November 2016
This paper is written in Russian
Citation: I.P. Lobzenko, P.V. Lobzenko, A.M. Bayazitov, A.P. Chetverikov, R.I. Machmutova, A.A. Kistanov. Numerical modeling of 3D discrete breathers in fcc Ni. Lett. Mater., 2016, 6(4) 304-308
BibTex   https://doi.org/10.22226/2410-3535-2016-4-304-308

Abstract

Molecular dynamics study of discrete breathers in fcc Ni crystal is undertaken. The initial conditions for the excitation of breathers are constructed by imposing a spherically symmetric function, exponentially decreasing with the distance from the center of the sphere, on the delocalized vibrational normal mode, the frequency of which lies above the phonon spectrum of the crystal. This method allows to obtain a three-dimensional discrete breather of a new type, in the core of which the atoms oscillate like in the normal mode, and the amplitude of these oscillations decreases exponentially with distance from the center of the breather. A detailed discussion of the properties of the normal mode on which the breather is built is presented. It is shown that in the two extreme cases, constant volume and zero pressure, the mode shows hard type of non-linearity in a wide range of amplitudes, which ensures the hard type of the nonlinearity of the breather and its frequency lying above the phonon spectrum of the crystal. The spatial localization parameter of the breather is determined as the function of breather amplitude so that the breather life time is maximal. Found discrete breathers have relatively long lifetime of the order of 10 ps, which substantially exceeds the lifetime of thermal fluctuations.The proof of the existence of three-dimensional breathers in fcc Ni, presented in this paper, is an interesting and important result in the theory of discrete breathers.

References (30)

1. S. Flach and A. Gorbach. Phys. Rep. 467, 1 (2007). Crossref
2. D. Campbell, S. Flach and Yu. Kivshar. Phys. Today 51 (1), 43 - 49 (2004).
3. S. V. Dmitriev, E. A. Korznikova, J. A. Baimova, M. G. Velarde. Physics Uspekhi 186, 446 (2016), [С. В. Дмитриев, Е. А. Корзникова, Ю. А. Баимова, М. Г. Веларде. Успехи физических наук 186, 471 (2016), DOI: 10.3367 / UFNr.2016.02.037729]. Crossref
4. A. Sievers and S. Takeno. Phys. Rev. Lett. 61, 970 (1988). Crossref
5. B. I. Swanson, J. A. Brozik, S. P. Love et al., Phys. Rev. Lett. 82, 3288 (1999). Crossref
6. G. Kalosakas, A. R. Bishop and A. P. Shreve, Phys. Rev. B 66, 094303 (2002). Crossref
7. M. E. Manley, A. Alatas, F. Trouw et al., Phys. Rev. B 77, 214305 (2008). Crossref
8. M. E. Manley, A. J. Sievers, J. W. Lynn et al., Phys. Rev. B 79, 134304 (2009). Crossref
9. M. Kempa, P. Ondrejkovic, P. Bourges et al., J. Phys.: Condens. Matter 25, 055403 (2013).
10. A. J. Sievers, M. Sato, J. B. Page and T. Rossler, Phys. Rev. B 88, 104305 (2013). Crossref
11. S. A. Kiselev and A. J. Sievers. Phys. Rev. B 55, 5755 (1997). Crossref
12. L. Z. Khadeeva and S. V. Dmitriev. Phys. Rev. B 81, 214306 (2010). Crossref
13. Yu. A. Baimova, S. V. Dmitriev, A. A. Kistanov, and A. I. Potekaev. Russ. Phys. J. 56 (2), 180 (2013).
14. M. Haas, V. Hizhnyakov, A. Shelkan, M. Klopov, and A. J. Sievers Phys. Rev. B 84, 144303 (2011). Crossref
15. R. T. Murzaev, A. A. Kistanov, V. I. Dubinko, D. A. Terentyev, S. V. Dmitriev. Comput. Mater. Sci. 98, 88 (2015).
16. N. K. Voulgarakis, G. Hadjisavvas, P. C. Kelires, and G. P. Tsironis. Phys. Rev. B 69, 113201 (2004). Crossref
17. N. N. Medvedev, M. D. Starostenkov and M. E. Manley. J. Appl. Phys. 114, 213506 (2013). Crossref
18. L. Z. Khadeeva, S. V. Dmitriev, and Yu. S. Kivshar’. JETP Lett. 97 (7), 539 (2011). Crossref
19. E. A. Korznikova, J. A. Baimova and S. V. Dmitriev. Europhys. Lett. 102, 60004 (2013).
20. J. A. Baimova, S. V. Dmitriev and K. Zhou. Europhys. Lett. 100, 36005 (2012).
21. B. Liu, J. A. Baimova, S. V. Dmitriev et al., J. Phys. D: Appl. Phys. 46, 305302 (2013).
22. G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko and D. S. Ryabov, Phys. Rev. B 90, 045432 (2014). Crossref
23. I. P. Lobzenko, G. M. Chechin, G. S. Bezuglova, Yu. A. Baimova, E. A. Korznikova, S. V. Dmitriev. Phys. Solid State. 58 (3), 633 (2016). Crossref
24. G. M. Chechin, I. P. Lobzenko Letters on Materials 4 (4), pp. 226 - 229 (2014). Crossref
25. S. V. Dmitriev, L. Z. Khadeeva. Phys. Solid State. 53 (7), 1425 - 1430 (2011). Crossref
26. E. A. Korznikova, S. Yu. Fomin, E. G. Soboleva, S. V. Dmitriev, JETP Letters 103 (4), 277 - 287 (2006), [Е. А. Корзникова, С. Ю. Фомин, Э. Г. Соболева, С. В. Дмитриев, Письма в ЖЭТФ, 103 (4), 303 - 308 (2016)]. Crossref
27. S. Plimpton. J Comp. Phys., 117 (1) 1 - 19 (1995). Crossref
28. S. M. Foiles, Phys Rev B 32, 7685 (1985). Crossref
29. G. M. Chechin, G. S. Dzhelauhova and E. A. Mehonoshina, Phys. Rev. E 74, 036608 (2006).
30. G. M. Chechin, G. S. Dzhelauhova, J. Sound Vib. 322, 490 (2009).

Cited by (3)

1.
E. Barani, Ivan P. Lobzenko, Elena A. Korznikova, Elvira G. Soboleva, Sergey V. Dmitriev, K. Zhou, A. Marjaneh. Eur. Phys. J. B. 90(3) (2017). Crossref
2.
Olga V. Bachurina, Ramil T. Murzaev, Dmitry V. Bachurin. J. Micromech. Mol. Phys. , 1950001 (2018). Crossref
3.
O.V. Bachurina. Computational Materials Science. 160, 217 (2019). Crossref

Similar papers