Molecular dynamic analysis of energy transport in a Pt3Al crystal under the impact in the spectrum gap frequency

P.V. Zakharov, S.V. Dmitriev, E.A. Korznikova show affiliations and emails
Received  29 July 2021; Accepted  18 August 2021
This paper is written in Russian
Citation: P.V. Zakharov, S.V. Dmitriev, E.A. Korznikova. Molecular dynamic analysis of energy transport in a Pt3Al crystal under the impact in the spectrum gap frequency. Lett. Mater., 2021, 11(3) 338-344
BibTex   https://doi.org/10.22226/2410-3535-2021-3-338-344

Abstract

The process of formation of a solitary wave under external harmonic action at the frequencies of the forbidden zone of the crystal.Сonstant search for new mechanisms of energy transport associated with a decrease in losses results in the active investigation of the possibilities of generating mobile excitations at frequencies outside the phonon spectrum. The effect of energy transfer at frequencies outside the band, possible in case if the excitation amplitude exceeds the critical value, was previously actively studied in reduced dimension systems. In this work, for the first time, the possibility and features of energy transfer at frequencies outside the phonon spectrum of a crystal are studied on the Pt3Al biatomic lattice, the corresponding excitations in which are created through the implementation of harmonic vibrations at frequencies lying in the phonon spectrum gap. It was found that as a result of the initial impact, the parameters of which lie in the band gap, at the first stage, discrete breathers are formed on aluminum atoms lying in the immediate vicinity of the impact zone. The threshold value of the energy required to excite breathers, determined by the amplitude and frequency of exposure, decreases as the frequency approaches the boundary of the slit in the spectrum. At the second stage, after the end of the harmonic action, a soliton-like wave is formed, moving along the crystal with an average speed of 4.5 km / s. The wave velocity is practically independent of the initial disturbance amplitude. The shape and amplitude of the moving wave are weakly dependent on the initial frequency. Significant differences in the profile and a tendency to bimodality were revealed only when exposed to frequencies close to the lower limit of the spectrum. The results obtained contribute to a fundamental understanding of the features of the propagation of elastic disturbances in nonlinear media in case of forbidden zones region impacts.

References (63)

1. F. Geniet, J. Leon. Physical Review Letters. 89 (13), 134102 (2002). Crossref
2. F. Geniet, J. Leon. Journal of Physics Condensed Matter. 15 (17), 2933 (2003). Crossref
3. R. Khomeriki, S. Lepri, S. Ruffo. Physical Review E. 70 (6), 7 (2004). Crossref
4. R. Khomeriki. Physical Review Letters. 92(6), 063905 (2004). Crossref
5. J. E. Macías-Díaz, A. Puri. Physica D: Nonlinear Phenomena. 228 (2), 112 (2007). Crossref
6. J. E. Macías-Díaz, A. Puri. Physics Letters, Section A: General, Atomic and Solid State Physics. 366 (4-5), 447 (2007). Crossref
7. H. Susanto, N. Karjanto. Journal of Nonlinear Optical Physics and Materials. 17 (2), 159 (2008). Crossref
8. R. Khomeriki, J. Leon. Physical Review A − Atomic, Molecular, and Optical Physics. 80 (3), 033822 (2009). Crossref
9. B.-Q. Ai, D. He, B. Hu. Physical Review E − Statistical, Nonlinear, and Soft Matter Physics. 81 (3), 031124 (2010). Crossref
10. J. E. Macías-Díaz. Communications in Nonlinear Science and Numerical Simulation. 15 (7), 1740 (2010). Crossref
11. P. Anghel-Vasilescu, J. Dorignac, F. Geniet, J. Leon, M. Taki. Physical Review Letters. 105 (7), 074101 (2010). Crossref
12. P. Anghel-Vasilescu, J. Dorignac, F. Geniet, J. Leon, A. Taki. Physical Review A − Atomic, Molecular, and Optical Physics. 83 (4), 043836 (2011). Crossref
13. F. Tao, W. Chen, J. Pan, W. Xu, S. Du. Chaos. Solitons and Fractals. 45 (6), 810 (2012). Crossref
14. A. B. Togueu Motcheyo, C. Tchawoua, M. Siewe Siewe, J. D. Tchinang Tchameu. Communications in Nonlinear Science and Numerical Simulation. 18 (4), 946 (2013). Crossref
15. B. Yousefzadeh, A. S. Phani. Journal of Sound and Vibration. 380, 242 (2016). Crossref
16. Z. Wu, K. W. Wang. Proceedings of SPIE − The International Society for Optical Engineering. 10595, 1059514 (2018). Crossref
17. Z. Wu, K. W. Wang. Journal of Sound and Vibration. 458, 389 (2019). Crossref
18. M. R. T. Bidhendi. Proceedings of the ASME Design Engineering Technical Conference. 7, V007T07A017 (2020). Crossref
19. M. M. Foudjio, F. T. Ndjomatchoua, C. L. Gninzanlong, C. Tchawoua. Chaos. 30 (12), 123122 (2020). Crossref
20. Q. Zhang, H. Fang, J. Xu. Physical Review E. 101 (4), 042206 (2020). Crossref
21. J. E. Pechac, M. J. Frazier. Crystals. 11 (2), 94 (2021). Crossref
22. J. E. Macías-Díaz, A. Bountis. Journal of Computational and Nonlinear Dynamics. 16 (2), 021001 (2021). Crossref
23. I. Evazzade, I. P. Lobzenko, E. A. Korznikova, I. A. Ovid’Ko, M. R. Roknabadi, S. V. Dmitriev. Physical Review B. 95 (3), 035423 (2017). Crossref
24. T. Dauxois, M. Peyrard, C. R. Willis. Physica D: Nonlinear Phenomena. 57 (3-4), 267 (1992). Crossref
25. S. Flach, C. R. Willis. Physics Report. 295 (5), 181 (1998). Crossref
26. S. Flach, A. V. Gorbach. Physics Reports. 67 (1-3), 1 (2008). Crossref
27. S. V. Dmitriev, E. A. Korznikova, Y. A. Baimova, M. G. Velarde. Physics-Uspekhi. 59 (5), 446 (2016). Crossref
28. I. G. Bostrem, V. E. Sinitsyn, A. S. Ovchinnikov, M. I. Fakhretdinov, E. G. Ekomasov. Letters on Materials. 11 (1), 109 (2021). (in Russian) [И. Г. Бострем, В. Е. Синицын, А. С. Овчинников, М. И. Фахретдинов, Е. Г. Екомасов. Письма о материалах. 11 (1), 109 (2021).]. Crossref
29. W. Feng, L. Wu, B. Tang, K. Deng. International Journal of Theoretical Physics. 60 (4), 1438 (2021). Crossref
30. I. G. Bostrem, Vl. E. Sinitsyn, A. S. Ovchinnikov, E. G. Ekomasov, J. Kishine. AIP Advances. 11 (1), 015208 (2021). Crossref
31. C. L. Gninzanlong, F. T. Ndjomatchoua, C. Tchawoua. Physical Review E. 102 (5), 052212 (2021). Crossref
32. C. Naveau, G. Vanderhaegen, P. Szriftgiser, G. Martinelli, M. Droques, A. Kudlinski, M. Conforti, S. Trillo, N. Akhmediev, A. Mussot. Frontiers in Physics. 9, 637812 (2021). Crossref
33. K. A. Krylova, I. P. Lobzenko, A. S. Semenov, A. A. Kudreyko, S. V. Dmitriev. Computational Materials Science. 180, 109695 (2020). Crossref
34. R. T. Murzaev, A. S. Semenov, A. I. Potekaev, M. D. Starostenkov, P. V. Zakharov, V. V. Kulagina, S. V. Dmitriev. Russian Physics Journal. 64 (2), 293 (2021). Crossref
35. E. A. Korznikova, A. Y. Morkina, M. Singh, A. M. Krivtsov, V. A. Kuzkin, V. A. Gani, Y. V. Bebikhov, S. V. Dmitriev. European Physical Journal B. 93 (7), 123 (2020). Crossref
36. R. Vidhya, P. V. Ranjan, N. R. Shanker. Proceedings of the 7th International Conference on Electrical Energy Systems, ICEES. 9383639, 448 (2021). Crossref
37. S. V. Dmitriev, E. A. Korznikova, A. P. Chetverikov. Journal of Experimental and Theoretical Physics. 126, 347 (2018). Crossref
38. M. Singh, A. Y. Morkina, E. A. Korznikova, V. I. Dubinko, D. A. Terentiev, D. Xiong, O. B. Naimark, V. A. Gani, S. V. Dmitriev. Journal of Nonlinear Science. 31 (1), 12 (2021). Crossref
39. F. Hadipour, D. Saadatmand, M. Ashhadi, A. M. Marjaneh, I. Evazzade, A. Askari, S. V. Dmitriev. Physics Letters, Section A: General, Atomic and Solid State Physics. 384 (4), 126100 (2020). Crossref
40. K. S. Sergeev, A. P. Chetverikov, E. del Rio. Nonlinear Dynamics. 102 (3), 1813 (2020). Crossref
41. X. W. Zhou, R. A. Johnson, H. N. G. Wadley. Physical Review B. 69, 144113 (2004). Crossref
42. B. Rezaee, S. Rastegari, H. Eyvazjamadi. Surface Engineering. 37 (3), 343 (2021). Crossref
43. X.-Y. Lang, G.-F. Han, B.-B. Xiao. Advanced Functional Materials. 25 (2), 230 (2015). Crossref
44. H. Wan, R. V. Chaudhari, B. Subramaniam. Topics in Catalysis. 55 (3-4), 129 (2012). Crossref
45. Y. Pan. Journal of Materials Engineering and Performance. 30 (4), 2661 (2021). Crossref
46. Q. Li, B. Wei, Y. Li, J. Xu, J. Li, L. Liu, F. L. Deepak. ACS Sustainable Chemistry and Engineering. 7 (11), 9842 (2019). Crossref
47. Y. Pan, M. Wen. Vacuum. 156, 419 (2019). Crossref
48. A. I. Cherednichenko, P. V. Zakharov, M. D. Starostenkov, M. O. Sysoeva, A. M. Eremin. Computer Research and Modeling. 11 (1), 109 (2019). (in Russian) [А. И. Чередниченко, П. В. Захаров, М. Д. Старостенков, М. О. Сысоева, А. М. Ерёмин. Компьютерные исследования и моделирование. 11 (1), 109 (2019).]. Crossref
49. P. V. Zakharov, M. D. Starostenkov, A. M. Eremin. IOP Conference Series: Materials Science and Engineering. 537 (2), 022031 (2019). Crossref
50. P. V. Zakharov, M. D. Starostenkov, E. A. Korznikova, A. M. Eremin, I. S. Lutsenko, S. V. Dmitriev. Physics of the Solid State. 61 (11), 2160 (2019). Crossref
51. E. A. Korznikova, D. V. Bachurin, S. Y. Fomin, A. P. Chetverikov, S. V. Dmitriev. Eur. Phys. J. B. 90 (2), 23 (2017). Crossref
52. A. V. Savin, E. A. Korznikova, S. V. Dmitriev. Phys. Rev. B. 99, 235411 (2019). Crossref
53. I. A. Shepelev, A. P. Chetverikov, S. V. Dmitriev, E. A. Korznikova. Comput. Mater. Sci. 177, 109549 (2020). Crossref
54. E. A. Korznikova, I. A. Shepelev, A. P. Chetverikov, S. V. Dmitriev, S. Y. Fomin, K. Zhou. J. Exp. Theor. Phys. 127 (6), 1009 (2018). Crossref
55. R. I. Babicheva, I. Evazzade, E. A. Korznikova, I. A. Shepelev, K. Zhou, S. V. Dmitriev. Comput. Mater. Sci. 163 (1), 248 (2019). Crossref
56. I. A. Shepelev, S. V. Dmitriev, A. A. Kudreyko, M. G. Velarde, E. A. Korznikova. Chaos Solitons Fractals. 140 (2), 110217 (2020). Crossref
57. H.-Y. Chen, N.-T. Tsou. Comput. Model. Eng. Sci. 120 (2), 319 (2019). Crossref
58. W.-J. Lee, Y.-C. Lo, A. Yang, K. Chen, N.-Y. Chen. Comput. Model. Eng. Sci. 120 (2), 293 (2019). Crossref
59. L. K. Rysaeva, D. V. Bachurin, R. T. Murzaev, D. U. Abdullina, E. A. Korznikova, R. R. Mulyukov, S. V. Dmitriev. Facta Univ. Ser. Mech. Eng. 18 (4), 525 (2020). Crossref
60. L. K. Rysaeva, E. A. Korznikova, R. T. Murzaev, D. U. Abdullina, A. A. Kudreyko, J. A. Baimova, D. S. Lisovenko, S. V. Dmitriev. Facta Univ. Ser. Mech. Eng. 18 (1), 1 (2020). Crossref
61. R. I. Babicheva, M. Dahanayaka, B. Liu, E. A. Korznikova, S. V. Dmitriev, M. S. Wu, K. Zhou. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 259, 114569 (2020). Crossref
62. LAMMPS Molecular Dynamics Simulator [Electronic resource]. Website http://lammps.sandia.gov/.
63. A. Stukowski. Modelling and Simulation Materials Science and Engineering. 18, 015012 (2010). Crossref

Similar papers

Funding

1. Russian Science Foundation - 21-12-00275