Influence of the thickness of a nonmagnetic layer on the coupled dynamics of magnetic vortices in a spin-transfer nanooscillator

V.V. Mukhamadeeva, S.V. Stepanov, K.A. Zvezdin, E.G. Ekomasov show affiliations and emails
Received 16 August 2022; Accepted 04 October 2022;
Citation: V.V. Mukhamadeeva, S.V. Stepanov, K.A. Zvezdin, E.G. Ekomasov. Influence of the thickness of a nonmagnetic layer on the coupled dynamics of magnetic vortices in a spin-transfer nanooscillator. Lett. Mater., 2022, 12(4) 327-331
BibTex   https://doi.org/10.22226/2410-3535-2022-4-327-331

Abstract

Dependence of the critical currents on the thickness of the non-magnetic layer in a spin-transfer nanoscillator.A spin torque nano-oscillator in the form of a three-layer magnetic tunneling junction of small diameter (120 nm), where the magnetizations in both magnetic layers are in vortex state, is considered. The effect of the thickness of a nonmagnetic layer on the coupled dynamics of two magnetic vortices in a spin torque nano-oscillator has been studied. The thick permalloy magnetic layer has a thickness of 15 nm, the middle non-magnetic layer has a thickness in the first case of 12.5 and in the second 15 nm, and the thin permalloy magnetic layer has a thickness of 4 nm. Numerical calculation of the dynamics of magnetostatically coupled vortices was carried out using the software package SpinPM for micromagnetic modeling. The features of the vortex motion dynamic are studied for different thicknesses of the nonmagnetic interlayer. It is shown that in all cases of thickness of the nonmagnetic interlayer, three regimes of vortex dynamics are observed: the oscillations of magnetic vortices damped over time, the mode of stationary coupled oscillations of magnetic vortices, and regime, when vortices “leave” the edge of the disk. It is found that increasing in the thickness of the nonmagnetic layer leads to decreasing in the values of the first, second, and third critical currents.

References (24)

1. K. A. Zvezdin, E. G. Ekomasov. Phys. Metals Metallogr. 123, 201 (2022). Crossref
2. K. Y. Guslienko. Journal of Nanoscience and Nanotechnology. 8, 2745 (2008). Crossref
3. D. Yu, J. Kang, J. Berakdar, C. Jia. NPG Asia Mater. 12, 36 (2020). Crossref
4. J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, S. Fukami, M. D. Stiles. Nat. Electron. 3, 360 (2020). Crossref
5. S. Wittrock, P. Talatchian, M. Romera, S. Menshawy, M. J. Garcia, M.-C. Cyrille, R. Ferreira, R. Lebrun, P. Bortolotti, U. Ebels, J. Grollier, V. Cros. Appl. Phys. Lett. 118, 012404 (2021). Crossref
6. R. V. Verba, D. Navas, A. Hierro-Rodriguez, S. A. Bunyaev, B. A. Ivanov, K. Y. Guslienko, G. N. Kakazei. Phys. Rev. Applied. 10, 031002 (2018). Crossref
7. K.-S. Lee, M.-W. Yoo, Y.-S. Choi, S.-K. Kim. Phys. Rev. Lett. 106, 147201 (2011). Crossref
8. M. E. Stebliy, S. Jain, A. G. Kolesnikov, A. V. Ognev, A. S. Samardak, A. V. Davydenko, E. V. Sukovatitcina, L. A. Chebotkevich, J. Ding, J. Pearson, V. Khovaylo, V. Novosad. Sci. Rep. 7, 1127 (2017). Crossref
9. N. Locatelli, V. V. Naletov, J. Grollier, G. Loubens, V. Cros, C. Deranlot, C. Ulysse, G. Faini, O. Klein, A. Fert. Appl. Phys. Lett. 98, 062501 (2011). Crossref
10. K. Y. Guslienko, K. S. Buchanan, S. D. Bader, V. Novosad. Appl. Phys. Lett. 86, 223112 (2005). Crossref
11. N. Locatelli, A. E. Ekomasov, A. V. Khvalkovskiy, S. A. Azamatov, K. A. Zvezdin, J. Grollier, E. G. Ekomasov, V. Cros. Appl. Phys. Lett. 102, 062401 (2013). Crossref
12. A. E. Ekomasov, S. V. Stepanov, K. A. Zvezdin, E. G. Ekomasov. Physics of Metals and Metallography. 118, 328 (2017). Crossref
13. S. S. Cherepov, B. C. Koop, A. Y. Galkin, R. S. Khymyn, B. A. Ivanov, D. C. Worledge, V. Korenivski. Phys. Rev. Lett. 109, 097204 (2012). Crossref
14. E. Holmgren, A. Bondarenko, B. A. Ivanov, V. Korenivski. Phys. Rev. B. 97, 094406 (2018). Crossref
15. V. Sluka, A. Kakay, A. M. Deac, D. E. Burgler, C. M. Schneider, R. Hertel. Nature Communications. 6, 6409 (2015). Crossref
16. A. Hamadeh, N. Locatelli, V. V. Naletov, R. Lebrun, G. Loubens, J. Grollier, O. Klein, V. Cros. Phys. Rev. Lett. 112, 257201 (2014). Crossref
17. A. E. Ekomasov, S. V. Stepanov, K. A. Zvezdin, E. G. Ekomasov. J. Magn. Magn. Mat. 471, 513 (2019). Crossref
18. Y. Gaididei, V. P. Kravchuk, D. D. Sheka. International Journal of Quantum Chemistry. 110, 83 (2009). Crossref
19. K. Y. Guslienko, O. V. Sukhostavets, D. V. Berkov. Nanoscale Research Letters. 9, 386 (2014). Crossref
20. A. E. Ekomasov, S. V. Stepanov, E. G. Ekomasov. Letters on Materials. 6 (1), 46 (2016). Crossref
21. E. G. Ekomasov, S. V. Stepanov, K. A. Zvezdin, N. G. Pugach, G. I. Antonov. Phys. Metals Metallogr. 122, 197 (2021). Crossref
22. D. V. Berkov, J. Miltat. Journal of Magnetism and Magnetic Materials. 320, 1238 (2008). Crossref
23. J. Leliaert, J. Mulkers. J. Appl. Phys. 125, 180901 (2019). Crossref
24. G. D. Loubens, A. Riegler, B. Pigeau, F. Lochner, F. Boust, et al. Phys. Rev. Lett. 102, 177602 (2009). Crossref

Similar papers

Funding

1. the State assignment of Russian Federation For The implementation of Scientific Research by laboratories - #075‑03‑2021‑193 / 5 30.09.2021
2. Russian Science Foundation - 19‑12‑00432