Simulation of vortex cores switching in nanocolumnar conducting triplex structure

A.E. Ekomasov, S.V. Stepanov, E.G. Ekomasov
Accepted: 13 January 2016
Citation: A.E. Ekomasov, S.V. Stepanov, E.G. Ekomasov. Simulation of vortex cores switching in nanocolumnar conducting triplex structure. Letters on Materials, 2016, 6(1) 46-48
BibTex   DOI: 10.22226/2410-3535-2016-1-46-48

Abstract

With the generalized Landau-Lifshitz equation the dynamics of the magnetization in the permalloy nanopillars of small diameter of 120 nm is studied. For the numerical calculation of the magnetic vortices bound dynamics a software package for micromagnetic simulations SpinPM was used. The nanopillars have two magnetic layers separated by a nonmagnetic layer. The study of two coupled magnetic vortices dynamics under the influence of an external magnetic field perpendicular to the plane of the sample and polarized electric current was conducted. The coupled magnetic vortices were taken with the same polarity and chirality. By using micromagnetic simulation the dependence of the magnetic field, switching the polarity of the vortex core in thin and thick layers, on the current strength was found. For the case of low currents, the vortex polarity switch in thin and thick layers was observed with a low exit of the vortex from the geometric center. For the case of high currents, the «dynamic» mechanism for the vortex core polarity switching was observed for a vortex in a thick layer for all values of the current polarization. For the vortex in a thin layer the "dynamic" mechanism of the vortex core polarity switching was observed only for the case of a large polarization. The minimum current value in the high current region (similarly to the case of nanocylinder with a diameter of 200 nm) significantly decreases with the increase of the current polarization value.

References (9)

1.
K.Yu. Guslienko, J. Nanosc. Nanotechn. 8, 2745 (2008).
2.
Y. Gaididei, V. P. Kravchuk, D. D. Sheka International Journal of Quantum Chemistry 110(1), 83, (2010).
3.
S. Petit-Watelot, J. Kim, A. Ruotolo, R. M. Otxoa, K. Bouzehouane, J. Grollier, A. Vansteenkiste, B.V. d. Wiele, V. Cros, T. Devolder Nature Physics 8, 682 (2012).
4.
T. Okuno, K. Shigeto, T. Ono, K. Mibu, and T. Shinjo. JMMM 240, 1 (2002).
5.
A. V. Khvalkovskiy, A. N. Slavin, J. Grollier, K. A. Zvezdin, K. Y. Guslienko. Appl. Phys. Lett. 96, 022504 (2010).
6.
N. Locatelli, A.E. Ekomasov, A.V. Khvalkovskiy, Sh.A. Azamatov, K.A. Zvezdin, J. Grollier, E.G. Ekomasov, V. Cros. Appl. Phys. Lett. 102, 062401 (2013).
7.
N. Locatelli, R. Lebrun, V.V. Naletov, A. Hamadeh, G. De Loubens, O. Klein, J. Grollier, V. Cros IEEE Transactions on Magnetics 51, 8, 4300206 (2015).
8.
A.E. Ekomasov, A.V. Khvalkovskiy, K.A. Zvezdin, E.G. Ekomasov. Bulletin of the Russian Academy of Sciences. Physics. 77, 1490 (2013) (in Russian).
9.
Myoung-Woo Yoo, Jehyun Lee, and Sang-Koog Kim. Appl. Phys. Lett. 100, 172413 (2012).