Properties of π-mode vibrations in strained carbon chains

G. Chechin, D. Sizintsev, O. Usoltsev show affiliations and emails
Accepted  16 May 2016
Citation: G. Chechin, D. Sizintsev, O. Usoltsev. Properties of π-mode vibrations in strained carbon chains. Lett. Mater., 2016, 6(2) 146-151


Nonlinear vibrations in strained monoatomic carbon chains are studied with the aid of ab initio methods based on the density functional theory. An unexpected phenomenon of structural transformation at the atomic level above a certain value of the strain was revealed in cumulene chain (carbyne-β). This phenomenon is a consequence of stability loss of the old equilibrium atomic positions that occur at small strain, and appearance of two new stable equilibrium positions near each of them. The aforementioned restructuring gives rise to a softening of π-mode whose frequency tends to zero in a certain region of amplitudes when carbon atoms begin to vibrate near new equilibrium positions. This resembles the concept of soft mode whose “freezing” is postulated in the theory of phase transitions in crystals to explain the transitions of displacement type. The dynamical modeling of mass point chains whose particles interact via Lennard-Jones potential can approximate our ab initio results well enough. In particular, this study demonstrates an essential role of dipole-dipole interactions between carbon atoms in formation of their new equilibrium positions in the cumulene chain. We believe that computer studying of Lennard-Jones chains enables to predict properties of various dynamical objects in carbon chains (different nonlinear normal modes and their bushes, discrete breathers etc.) which then can be verified by ab initio methods.

References (15)

1. S. Tongay, S. Dag, E. Durgun, R.T. Senger, S. Ciraci. J. Phys. Cond. Matt. 17, 3823 (2005).
2. S. Dug, S. Tongay, T. Yildirim, R.T. Senger, C.Y. Fong, S. Ciraci. Phys. Rev. B72, 155444 (2005).
3. S. Cahangirov, M. Topsakal, S. Ciraci. Phys. Rev. B82(19), 195444 (2010).
4. R.M. Rosenberg, J. Appl. Mech. 29, 7(1962).
5. G.M. Chechin, N.V. Novikova, A.A. Abramenko, Physica D166, 208 (2002).
6. G.M. Chechin, D.S. Ryabov, K.G. Zhukov .Physica D203, 121(2005).
7. V.P. Sakhnenko, G.M. Chechin. Dokl. Akad. Nauk 330, 308 (1993). V.P. Sakhnenko, G.M. Chechin. Phys. Dokl. 38, 219(1993).
8. G.M. Chechin, V.P. Sakhnenko. Physica D117, 43(1998).
9. P. Hohenberg, W. Kohn. Phys. Rev. 136, B864 (1964).
10. W. Kohn., L.J. Sham. Phys. Rev. 140, A1133 (1965).
11. W. Kohn. Rev. Mod. Phys. 71, 1253 (1999).
12. X. Gonze et al.Comput. Phys. Commun. 180, 2582 (2009).
14. D. W. Brenner. Phys. Rev. B 42, 9458 (1990).
15. А. А. Kistanov, E. A. Кorznikova, S. Yu. Fomin, K. Zhou, S. V. Dmitriev. Eur. Phys. J. B87, 211 (2014).

Cited by (4)

G.M. Chechin, D.A. Sizintsev, O.A. Usoltsev. Computational Materials Science. 138, 353 (2017). Crossref
Sergey V. Dmitriev, Julia A. Baimova, Elena A. Korznikova, Alexander P. Chetverikov. Understanding Complex Systems: Nonlinear Systems, Vol. 2, Chapter 7, p.175 (2018). Crossref
K. M. Liew, Y. Zhang, L. W. Zhang. Journal of Modeling in Mechanics and Materials. 1(1) (2017). Crossref
L.W. Zhang, Y. Zhang, K.M. Liew. Applied Mathematical Modelling. 49, 691 (2017). Crossref

Similar papers