The adsorption modeling of bisphenol A derivatives on the surface of carbon materials

S.A. Sozykin ORCID logo , E.V. Bartashevich show affiliations and emails
Received 23 May 2022; Accepted 21 September 2022;
Citation: S.A. Sozykin, E.V. Bartashevich. The adsorption modeling of bisphenol A derivatives on the surface of carbon materials. Lett. Mater., 2022, 12(4) 316-320
BibTex   https://doi.org/10.22226/2410-3535-2022-4-316-320

Abstract

Bisphenol A derivatives on the surface of carbon materials.A carbon nanotube and a graphene surface with bisphenol A derivatives have been simulated in the DFT framework using periodic boundary conditions. Such compounds are components of epoxy diane resins, which are important composite materials for aircraft structures. The simulation results allow one to state that the use of the specialized exchange-correlation functional Berland and Hyldgaard developed to account for weak Van der Waals interactions is preferable to DFT-D2 method. We observed that the energy of complexes formation depends on the orientation of the functional groups of diglycidyl ether of bisphenol A and determines by whether the surface of the carbon material is flat, like graphene, or curved, like nanotubes. It was found that the strongest binding is observed for nanotubes with a diameter of 1 nm, for which the energy of complex formation is 65 % lower than for the complex of diglycidyl ether of bisphenol A on graphene with the same orientation of functional groups relative to the surface. On the curved outer surface of the nanotubes, the ester derivatives form a greater variety of non-covalent interactions in accordance with the QTAIM analysis of electron density and the energy of complexes formation is lower.

References (31)

1. X. Sun, C. Huang, L. Wang, L. Liang, Y. Cheng, W. Fei, Y. Li. Adv. Mater. 33 (6), 1 (2021). Crossref
2. N. M. Nurazzi, M. R. M. Asyraf, A. Khalina, N. Abdullah, F. A. Sabaruddin, S. H. Kamarudin, S. Ahmad, A. M. Mahat, C. L. Lee, H. A. Aisyah, M. N. F. Norrrahim, R. A. Ilyas, M. M. Harussani, M. R. Ishak, S. M. Sapuan. Polymers. 13 (7), 1 (2021). Crossref
3. L. R. Safina, J. A. Baimova, K. A. Krylova, R. T. Murzaev, R. R. Mulyukov. Lett. Mater. 10 (3), 351 (2020). Crossref
4. S. Lee, J. Kim. Synth. Met. 284, 116989 (2022). Crossref
5. F.-L. Jin, N. Chu, S.-S. Yao, S.-J. Park. Korean J. Chem. Eng. 39, 2182 (2022). Crossref
6. S. R. Kalidindi, M. Buzzy, B. L. Boyce, R. Dingreville. Front. Mater. 9, 1 (2022). Crossref
7. R. Gusain, N. Kumar, S. S. Ray. Coord. Chem. Rev. 405, 213111 (2020). Crossref
8. A. L. T. Zheng, Y. Andou. Int. J. Environ. Sci. Technol. 19, 6869 (2021). Crossref
9. A. E. D. Mahmoud. J. Environ. Manage. 270, 110911 (2020). Crossref
10. R. M. Senin, I. Ion, A. C. Ion. Polish J. Environ. Stud. 27 (5), 2245 (2018). Crossref
11. R. M. Senin, I. Ion, O. Oprea, R. Stoica, R. Ganea, A. C. Ion. Rev. Chim. 69 (5), 1233 (2018). Crossref
12. J. Xu, L. Wang, Y. Zhu. Langmuir. 28, 8418 (2012). Crossref
13. D. Cortés-Arriagada, L. Sanhueza, M. Santander-Nelli. J. Mol. Model. 19, 3519 (2013). Crossref
14. Q. Zaib, I. A. Khan, N. B. Saleh, J. R. V. Flora, Y. G. Park, Y. Yoon. Water. Air. Soil Pollut. 223 (6), 3281 (2012). Crossref
15. R. F. W. Bader. Atoms in Molecules: A Quantum Theory. Oxford, A Clarendon Press Publication (1994) 458 p.
16. W. Nakanishi, S. Hayashi, K. Narahara. J. Phys. Chem. A. 112 (51), 13593 (2008). Crossref
17. S. A. Sozykin, V. P. Beskachko. Fullerenes Nanotub. Carbon Nanostructures. 30 (1), 199 (2022). Crossref
18. K. Melchor-Rodríguez, C.-R. Chayan, J. J.-H. Ulises. Molecules. 26, 6969 (2021). Crossref
19. M. R. Hossain, M. M. Hasan, N. E. Ashrafi, H. Rahman, M. S. Rahman, F. Ahmed, T. Ferdous, M. A. Hossain. Phys. E Low-Dimensional Syst. Nanostructures. 126, 114483 (2021). Crossref
20. J. M. Soler, E. Artacho, J. D. Gale, A. Garc, J. Junquera, P. Ordej, S. Daniel. J. Phys.: Condens. Matter. 14, 2745 (2002). Crossref
21. J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77 (18), 3865 (1996).
22. S. Grimme. J. Comput. Chem. 27 (15), 1787 (2006). Crossref
23. K. Berland, P. Hyldgaard. Phys. Rev. B. 89 (3), 035412 (2014). Crossref
24. O. M. Holodova, N. V. Prutsakova, T. P. Zhdanova, A. A. Lavrentyev, I. V. Ershov, V. V. Ilyasov. Lett. Mater. 10 (4), 365 (2020). (in Russian) [О. М. Холодова, Н. В. Пруцакова, Т. П. Жданова, А. А. Лаврентьев, И. В. Ершов, В. В. Илясов. Письма о материалах. 10 (4), 365 (2020).]. Crossref
25. E. Anikina, V. Beskachko. Bull. of the South Ural State Univ., Ser. Math. Mech. Phys. 12 (1), 55 (2020). Crossref
26. S. F. Boys, F. Bernardi. Mol. Phys. 100 (1), 65 (2002). Crossref
27. A. Otero-De-La-Roza, E. R. Johnson, V. Luaña. Comput. Phys. Commun. 185 (3). 1007 (2014). Crossref
28. S. A. Sozykin. Comput. Phys. Commun. 262, 107843 (2021). Crossref
29. FHI pseudodatabase. URL: https://departments.icmab.es/leem/SIESTA_MATERIAL/Databases/Pseudopotentials/periodictable-intro.html.
30. C.F. Lim, J.M. Tanski. J. Chem. Crystallogr. 37, 587 (2007). Crossref
31. J.L. Flippen-Anderson, R. Gilardi. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 37(7), 1433 (1981). Crossref

Similar papers

Funding

1. Russian Science Foundation - 22-13-00170