Nonlinear supratransmission effect in copper-graphene composite

A.M. Kazakov, P.V. Zakharov, G.F. Korznikova, Y.V. Bebikhov, E.A. Korznikova show affiliations and emails
Received: 27 November 2023; Revised: 04 December 2023; Accepted: 04 December 2023
Citation: A.M. Kazakov, P.V. Zakharov, G.F. Korznikova, Y.V. Bebikhov, E.A. Korznikova. Nonlinear supratransmission effect in copper-graphene composite. Lett. Mater., 2023, 13(4s) 499-504
BibTex   https://doi.org/10.22226/2410-3535-2023-4-499-504

Abstract

The numerical investigation of the behaviour of a Cu-graphene composite under harmonic impact revealed that if the graphene component is subjected to harmonic driving, it becomes the predominant channel for energy transport due to its wider phonon spectrum and greater number of phononsThis study examines the mechanism of nonlinear supratransmission (NST), which involves the transfer of disturbance to discrete media at frequencies not supported by the structure. A copper-graphene composite with 3 graphene layers inside copper matrix was considered. The investigation was carried out using atomistic modeling through molecular dynamics. Energy propagation in the crystal was carried out by harmonic influence according to the sinusoidal law. Obtained results shows that this composite has no forbidden zones, which indicates that the classical effect of nonlinear supratransmission cannot be manifested. Depending on the area of harmonic influence, different material behaviour can be observed, from smooth energy transfer deep into the crystal to its destruction.

References (32)

1. M. Saeed, R. S. U. Haq, S. Ahmed, F. Siddiqui, J. Yi. J. Alloys Compd. 970, 172625 (2023). Crossref
2. J. Baimova, I. P. Lobzenko, S. V. Dmitriev. MSF. 845, 255 (2016). Crossref
3. E. A. Korznikova, S. A. Shcherbinin, D. S. Ryabov, G. M. Chechin, E. G. Ekomasov, E. Barani, K. Zhou, S. V. Dmitriev. Phys. Status Solidi B. 256, 1800061 (2018). Crossref
4. A. R. Davletshin, S. V. Ustiuzhanina, A. A. Kistanov, D. Saadatmand, S. V. Dmitriev, K. Zhou, E. A. Korznikova. Phys. B: Condens. 534, 63 (2018). Crossref
5. R. T. Murzaev, K. A. Krylova, J. A. Baimova. Materials. 16, 3747 (2023). Crossref
6. P. V. Polyakova, J. A. Baimova. Phys. Met. Metallogr. 124, 394 (2023). Crossref
7. L. R. Safina, E. A. Rozhnova, R. T. Murzaev, J. A. Baimova. Appl. Sci. 13, 916 (2023). Crossref
8. J. A. Baimova, S. A. Shcherbinin. Materials. 16, 202 (2023). Crossref
9. G. Korznikova, T. Czeppe, G. Khalikova, D. Gunderov, E. Korznikova, L. Litynska-Dobrzynska, M. Szlezynger. Mater. Charact. 161, 110122 (2020). Crossref
10. M. Wang, J. Sheng, L. D. Wang, G. Wang, W. D. Fei. J. Mater. Res. Technol. 17, 3205 (2022). Crossref
11. M. Wu, Z. Chen, C. Huang, K. Huang, K. Jiang, J. Liu. RSC Adv. 9, 39883 (2019). Crossref
12. D. Chen, H. Feng, J. Li. Chem. Rev. 112, 6027 (2012). Crossref
13. X. Li, J. Miu, M. An, J. Mei, F. Zheng, J. Jiang, H. Wang, Y. Huang, Q. Li. New J. Chem. 46, 10107 (2022). Crossref
14. S. He, B. Liu, Z. Pei, X. Zhang, B. Liu, D.-B. Xiong. J. Appl. Phys. 134, 075104 (2023). Crossref
15. A. M. Kazakov, G. F. Korznikova, I. I. Tuvalev, A. A. Izosimov, E. A. Korznikova. Materials. 16, 7199 (2023). Crossref
16. P. V. Zakharov. Comput. Res. Model. 15, 599 (2023). Crossref
17. A. I. Cherednichenko, P. V. Zakharov, M. D. Starostenkov, M. O. Sysoeva, A. M. Eremin. Comput. Res. Model. 11, 109 (2019). (in Russian) [А.И. Чередниченко, П.В. Захаров, М.Д. Старостенков, М.О. Сысоева, А.М. Ерёмин. Компьютерные исследования и моделирование. 11, 109 (2019).]. Crossref
18. P. V. Zakharov, M. D. Starostenkov, E. A. Korznikova, A. M. Eremin, I. S. Lutsenko, S. V. Dmitriev. Phys. Solid State. 61, 2160 (2019). Crossref
19. P. Anghel-Vasilescu, J. Dorignac, F. Geniet, J. Leon, M. Taki. Phys. Rev. Lett. 105, 074101 (2010). Crossref
20. P. Anghel-Vasilescu, J. Dorignac, F. Geniet, J. Leon, M. Taki. Phys. Rev. A. 834, 043836 (2011). Crossref
21. G. Yu, X. Wang, Z. Tao. Phys. Rev. E. 83, 026605 (2011). Crossref
22. A. B. Togueu Motcheyo, J. D. Tchinang Tchameu, S. M. Siewe, C. Tchawoua. Commun. Nonlinear Sci. Numer. Simul. 50, 29 (2017). Crossref
23. J. G. Cui, T. Yang, M.-Q. Niu, L.-Q. Chen. J. Sound Vib. 529, 116966 (2022). Crossref
24. A. Kamdoum Kuitche, A. B. Togueu Motcheyo, T. Kanaa, C. Tchawoua. Eur. Phys. J. Plus. 138, 142 (2023). Crossref
25. A. D. Adile, F. Kenmogne, A. K. S. Tewa, H. Simo, A. M. Tahir, S. Kumar. Int. J. Non-Linear Mech. 137, 103812 (2021). Crossref
26. Z. Wu, K. W. Wang. J. Sound Vib. 458, 389 (2019). Crossref
27. B. Q. Ai, D. He, B. Hu. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 031124 (2010). Crossref
28. A. V. Savin, E. A. Korznikova, S. V. Dmitriev, E. G. Soboleva. Comput. Mater. Sci. 135, 99 (2017). Crossref
29. S. Plimpton. J. Comput. Phys. 117, 1 (1995). Crossref
30. A. Stukowski. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010). Crossref
31. S. J. Stuart, A. B. Tutein, J. A. Harrison. J. Chem. Phys. 112, 6472 (2000). Crossref
32. X. W. Zhou, et al. Acta Mater, 49, 4005 (2001). Crossref

Similar papers

Funding

1. Russians Science Foundation - Grant No. 23-29-00863